413
Views
12
CrossRef citations to date
0
Altmetric
Research Articles

Impact of K16A and K28A mutation on the structure and dynamics of amyloid-β42 peptide in Alzheimer’s disease: key insights from molecular dynamics simulations

, , &
Pages 708-721 | Received 21 Sep 2018, Accepted 20 Feb 2019, Published online: 02 Apr 2019

References

  • Abraham, M. J., Murtola, T., Schulz, R., Páll, S., Smith, J. C., Hess, B., & Lindahl, E. (2015). GROMACS: High performance molecular simulations through multi-level parallelism from laptops to supercomputers. SoftwareX, 1–2, 19–25. doi:10.1016/j.softx.2015.06.001
  • Ball, K. A., Phillips, A. H., Nerenberg, P. S., Fawzi, N. L., Wemmer, D. E., & Head-Gordon, T. (2011). Homogeneous and heterogeneous tertiary structure ensembles of amyloid-β peptides. Biochemistry, 50(35), 7612–7628. doi:10.1021/bi200732x
  • Ball, K. A., Phillips, A. H., Wemmer, D. E., & Head-Gordon, T. (2013). Differences in β-strand populations of monomeric Aβ40 and Aβ42. Biophysical Journal, 104(12), 2714–2724. doi:10.1016/j.bpj.2013.04.056
  • Berendsen, H. J. C., Postma, J. P. M., van Gunsteren, W. F., DiNola, A., & Haak, J. R. (1984). Molecular dynamics with coupling to an external bath. The Journal of Chemical Physics, 81(8), 3684–3690. doi:10.1063/1.448118
  • Bugiani, O., Giaccone, G., Rossi, G., Mangieri, M., Capobianco, R., Morbin, M., … Tagliavini, F. (2010). Hereditary cerebral hemorrhage with amyloidosis associated with the E693K mutation of APP. Archives of Neurology, 67, 987–995.
  • Carballo-Pacheco, M., & Strodel, B. (2017). Oligomer formation of toxic and functional amyloid peptides studied with atomistic simulations. Protein Science, 26(2), 174–185.
  • Chakraborty, S., & Das, P. (2017). Emergence of alternative structures in amyloid beta 1-42 monomeric landscape by N-terminal hexapeptide amyloid inhibitors. Scientific Reports, 7, 9941.
  • Chandra, B., Halder, S., Adler, J., Korn, A., Huster, D., & Maiti, S. (2017). Emerging structural details of transient amyloid-β oligomers suggest designs for effective small molecule modulators. Chemical Physics Letters, 675, 51–55. doi:10.1016/j.cplett.2017.02.070
  • Chong, S.-H., & Ham, S. (2012). Impact of chemical heterogeneity on protein self-assembly in water. Proceedings of the National Academy of Sciences of the United States of America, 109(20), 7636–7641. doi:10.1073/pnas.1120646109
  • Choudhury, N., & Pettit, B. M. (2007). The dewetting transition and the hydrophobic effect. Journal of the American Chemical Society, 129(15), 4847–4852. doi:10.1021/ja069242a
  • Coskuner, O., & Wise-Scira, O. (2013). Arginine and disordered amyloid-β peptide structures: Molecular level insights into the toxicity in Alzheimer’s disease. ACS Chemical Neuroscience, 4(12), 1549–1558. doi:10.1021/cn4001389
  • Coskuner, O., Wise-Scira, O., Perry, G., & Kitahara, T. (2013). The structures of the E22Δ mutant-type amyloid-β alloforms and the impact of E22Δ mutation on the structures of the wild-type amyloid-β alloforms. ACS Chemical Neuroscience, 4(2), 310–320. doi:10.1021/cn300149j
  • Côté, S., Derreumaux, P., & Mousseau, N. (2011). Distinct morphologies for amyloid beta protein monomer: Aβ1-40, Aβ1-42, and Aβ1-40(D23N). Journal of Chemical Theory and Computation, 7(8), 2584–2592. doi:10.1021/ct1006967
  • Crescenzi, O., Tomaselli, S., Guerrini, R., Salvadori, S., D'Ursi, A. M., Temussi, P. A., & Picone, D. (2002). Solution structure of the Alzheimer amyloid β‐peptide (1–42) in an apolar microenvironment. European Journal of Biochemistry, 269(22), 5642–5648. doi:10.1046/j.1432-1033.2002.03271.x
  • Darden, T., York, D., & Pedersen, L. (1993). Particle mesh Ewald: An N⋅log(N) method for Ewald sums in large systems. The Journal of Chemical Physics, 98(12), 10089–10092. doi:10.1063/1.464397
  • Daura, X., Gademann, K., Jaun, B., Seebach, D., van Gunsteren, W. F., & Mark, A. E. (1999). Peptide folding: When simulation meets experiment. Angewandte Chemie International Edition, 38(1-2), 236–240. doi:10.1002/(SICI)1521-3773(19990115)38:1/2<236::AID-ANIE236>3.0.CO;2-M
  • Decock, M., Stanga, S., Octave, J. N., Dewachter, I., Smith, S. O., Constantinescu, S. N., & Kienlen-Campard, P. (2016). Glycines from the APP GXXXG/GXXXA transmembrane motifs promote formation of pathogenic Aβ oligomers in cells. Frontiers in Aging Neuroscience, 8, 107.
  • DeLano, W. L. (2002). The PyMOL molecular graphics system, Vol. 571. San Carlos, CA, USA: DeLano Scientific.
  • Dhanabalan, A. K., Kesherwani, M., Velmurugan, D., & Gunasekaran, K. (2017). Identification of new BACE1 inhibitors using pharmacophore and molecular dynamics simulations approach. Journal of Molecular Graphics and Modelling, 76, 56–69. doi:10.1016/j.jmgm.2017.06.001
  • Dutta, M., & Mattaparthi, V. S. K. (2018). In silico investigation on the inhibition of Aβ42 aggregation by Aβ40 peptide by potential of mean force study. Journal of Biomolecular Structure and Dynamics, 36(3), 741–752. doi:10.1080/07391102.2017.1296783
  • Goyal, D., Shuaib, S., Mann, S., & Goyal, B. (2017). Rationally designed peptides and peptidomimetics as inhibitors of amyloid-β (Aβ) aggregation: Potential therapeutics of Alzheimer’s disease. ACS Combinatorial Science, 19(2), 55–80. doi:10.1021/acscombsci.6b00116
  • Grabowski, T. J., Cho, H. S., Vonsattel, J. P. G., Rebeck, G. W., & Greenberg, S. M. (2001). Novel amyloid precursor protein mutation in an Iowa family with dementia and severe cerebral amyloid angiopathy. Annals of Neurology, 49(6), 697–705. doi:10.1002/ana.1009
  • Han, B., Liu, Y., Ginzinger, S. W., & Wishart, D. S. (2011). SHIFTX2: Significantly improved protein chemical shift prediction. Journal of Biomolecular NMR, 50(1), 43–57. doi:10.1007/s10858-011-9478-4
  • Hayden, E. Y., Hoi, K. K., Lopez, J., Inayathullah, M., Condron, M. M., & Teplow, D. B. (2017). Identification of key regions and residues controlling Aβ folding and assembly. Scientific Reports, 7, 12434.
  • Hendriks, L., van Duijn, C. M., Cras, P., Cruts, M., Van Hul, W., van Harskamp, F., … Van Broeckhoven, C. (1992). Presenile dementia and cerebral haemorrhage linked to a mutation at codon 692 of the β-amyloid precursor protein gene. Nature Genetics, 1(3), 218–221. doi:10.1038/ng0692-218
  • Hess, B., Bekker, H., Berendsen, H. J. C., & Fraaije, J. G. M. E. (1997). LINCS: A linear constraint solver for molecular simulations. Journal of Computational Chemistry, 18(12), 1463–1472. doi:10.1002/(SICI)1096-987X(199709)18:12<1463::AID-JCC4>3.3.CO;2-L
  • Hinrichs, N. S., & Pande, V. S. (2007). Calculation of the distribution of eigenvalues and eigenvectors in Markovian state models for molecular dynamics. The Journal of Chemical Physics, 126(24), 244101. doi:10.1063/1.2740261
  • Hori, Y., Hashimoto, T., Wakutani, Y., Urakami, K., Nakashima, K., Condron, M. M., … Iwatsubo, T. (2007). The Tottori (D7N) and English (H6R) familial Alzheimer disease mutations accelerate Aβ fibril formation without increasing protofibril formation. Journal of Biological Chemistry, 282(7), 4916–4923. doi:10.1074/jbc.M608220200
  • Hou, L., Shao, H., Zhang, Y., Li, H., Menon, N. K., Neuhaus, E. B., … Zagorski, M. G. (2004). Solution NMR studies of the Aβ(1−40) and Aβ(1−42) peptides establish that the Met35 oxidation state affects the mechanism of amyloid formation. Journal of the American Chemical Society, 126(7), 1992–2005. doi:10.1021/ja036813f
  • Ion, G. N. D., Mihai, D. P., Lupascu, G., & Nitulescu, G. M. (2018). Application of molecular framework-based data-mining method in the search for beta-secretase 1 inhibitors through drug repurposing. Journal of Biomolecular Structure and Dynamics. doi:10.1080/07391102.2018.1526115
  • Jorgensen, W. L., Maxwell, D. S., & Tirado-Rives, J. (1996). Development and testing of the OPLS all-atom force field on conformational energetics and properties of organic liquids. Journal of the American Chemical Society, 118(45), 11225–11236. doi:10.1021/ja9621760
  • Kabsch, W., & Sander, C. (1983). Dictionary of protein secondary structure: Pattern recognition of hydrogen‐bonded and geometrical features. Biopolymers, 22(12), 2577–2637. doi:10.1002/bip.360221211
  • Karplus, M., & Grant, D. M. (1959). A criterion for orbital hybridization and charge distribution in chemical bonds. Proceedings of the National Academy of Sciences of the United States of America, 45(8), 1269–1273. doi:10.1073/pnas.45.8.1269
  • Khan, H., Marya, Amin, S., Kamal, M. A., & Patel, S. (2018). Flavonoids as acetylcholinesterase inhibitors: Current therapeutic standing and future prospects. Biomedicine & Pharmacotherapy, 101, 860–870.
  • Khatua, P., Jose, J. C., Sengupta, N., & Bandyopadhyay, S. (2016). Conformational features of the Aβ42 peptide monomer and its interaction with the surrounding solvent. Physical Chemistry Chemical Physics, 18(43), 30144–30159. doi:10.1039/C6CP04925G
  • Krone, M. G., Hua, L., Soto, P., Zhou, R., Berne, B., & Shea, J.-E. (2008). Role of water in mediating the assembly of Alzheimer amyloid-β Aβ16−22 protofilaments. Journal of the American Chemical Society, 130(33), 11066–11072. doi:10.1021/ja8017303
  • Kumar, A., Srivastava, G., Negi, A. S., & Sharma, A. (2019). Docking, molecular dynamics, binding energy-MM-PBSA studies of naphthofuran derivatives to identify potential dual inhibitors against BACE-1 and GSK-3β. Journal of Biomolecular Structure and Dynamics, 37(2), 275–290. doi:10.1080/07391102.2018.1426043
  • Kumar, D., Ganeshpurkar, A., Kumar, D., Modi, G., Gupta, S. K., & Singh, S. K. (2018). Secretase inhibitors for the treatment of Alzheimer's disease: Long road ahead. European Journal of Medicinal Chemistry, 148, 436–452. doi:10.1016/j.ejmech.2018.02.035
  • Kumari, R., Kumar, R., Open Source Drug Discovery Consortium, & Lynn, A. (2014). g_mmpbsa—A GROMACS tool for high-throughput MM-PBSA calculations. Journal of Chemical Information and Modeling, 54(7), 1951–1962. doi:10.1021/ci500020m
  • Li, Y., Zhang, X.-X., Jiang, L.-J., Yuan, L., Cao, T.-T., Li, X., … Yin, S.-F. (2015). Inhibition of acetylcholinesterase (AChE): A potential therapeutic target to treat Alzheimer's disease. Chemical Biology & Drug Design, 86, 776–782. doi:10.1111/cbdd.12550
  • Liao, M. Q., Tzeng, Y. J., Chang, L. Y., Huang, H. B., Lin, T. H., Chyan, C. L., & Chen, Y. C. (2007). The correlation between neurotoxicity, aggregation ability and secondary structure studied by sequence truncated Aβ peptides. FEBS Letters, 581(6), 1161–1165. doi:10.1016/j.febslet.2007.02.026
  • Lindahl, E., Hess, B., & van der Spoel, D. (2001). GROMACS 3.0: A package for molecular simulation and trajectory analysis. Journal of Molecular Modeling, 7(8), 306–317. doi:10.1007/s008940100045
  • Man, V. H., Nguyen, P. H., & Derreumaux, P. H. (2017). Conformational ensembles of the wild-type and S8C Aβ1-42 Dimers. The Journal of Physical Chemistry. B, 121(11), 2434–2442. doi:10.1021/acs.jpcb.7b00267
  • Manoharan, P., Chennoju, K., & Ghoshal, N. (2018). Computational analysis of BACE1–ligand complex crystal structures and linear discriminant analysis for identification of BACE1 inhibitors with anti P-glycoprotein binding property. Journal of Biomolecular Structure and Dynamics, 36(1), 262–276. doi:10.1080/07391102.2016.1276477
  • Manoharan, P., & Ghoshal, N. (2018). Fragment-based virtual screening approach and molecular dynamics simulation studies for identification of BACE1 inhibitor leads. Journal of Biomolecular Structure and Dynamics, 36(7), 1878–1892. doi:10.1080/07391102.2017.1337590
  • Mittal, S., Bravo-Rodriguez, K., & Sanchez-Garcia, E. (2018). Mechanism of inhibition of beta amyloid toxicity by supramolecular tweezers. The Journal of Physical Chemistry B, 122(15), 4196–4205. doi:10.1021/acs.jpcb.7b10530
  • Mu, Y., Nguyen, P. H., & Stock, G. (2005). Energy landscape of a small peptide revealed by dihedral angle principal component analysis. Proteins: Structure, Function, and Bioinformatics, 58(1), 45–52. doi:10.1002/prot.20310
  • Neto, D. C. F., Lima, J. A., de Almeida, J. S. F. D., França, T. C. C., Nascimento, C. J, D., & Villar, J. D. F. (2018). New semicarbazones as gorge-spanning ligands of acetylcholinesterase and potential new drugs against Alzheimer’s disease: Synthesis, molecular modeling, NMR, and biological evaluation. Journal of Biomolecular Structure and Dynamics, 36, 4099–4113.
  • Ngo, S. T., & Li, M. S. (2012). Curcumin binds to Aβ1-40 peptides and fibrils stronger than ibuprofen and naproxen. The Journal of Physical Chemistry. B, 116(34), 10165–10175. doi:10.1021/jp302506a
  • Nguyen, P., & Derreumaux, P. (2014). Understanding amyloid fibril nucleation and Aβ oligomer/drug interactions from computer simulations. Accounts of Chemical Research, 47(2), 603–611. doi:10.1021/ar4002075
  • Nguyen, P. H., Li, M. S., & Derreumaux, P. (2011). Effects of all-atom force fields on amyloid oligomerization: Replica exchange molecular dynamics simulations of the Aβ16–22 dimer and trimer. Physical Chemistry Chemical Physics, 13(20), 9778–9788. doi:10.1039/c1cp20323a
  • Nguyen, P. H., Tarus, B., & Derreumaux, P. (2014). Familial Alzheimer A2V mutation reduces the intrinsic disorder and completely changes the free energy landscape of the Aβ1-28 monomer. The Journal of Physical Chemistry B, 118(2), 501–510. doi:10.1021/jp4115404
  • Nie, Q., Du, X.-G., & Geng, M.-Y. (2011). Small molecule inhibitors of amyloid β peptide aggregation as a potential therapeutic strategy for Alzheimer’s disease. Acta Pharmacologica Sinica, 32(5), 545–551. doi:10.1038/aps.2011.14
  • Nilsberth, C., Westlind-Danielsson, A., Eckman, C. B., Condron, M. M., Axelman, K., Forsell, C., … Lannfelt, L. (2001). The 'Arctic' APP mutation (E693G) causes Alzheimer's disease by enhanced Aβ protofibril formation. Nature Neuroscience, 4(9), 887 –893. doi:10.1038/nn0901-887
  • Ono, K., Condron, M. M., & Teplow, D. B. (2010). Effects of the English (H6R) and Tottori (D7N) familial Alzheimer disease mutations on amyloid β-protein assembly and toxicity. Journal of Biological Chemistry, 285(30), 23186–23197. doi:10.1074/jbc.M109.086496
  • Pickhardt, M., Neumann, T., Schwizer, D., Callaway, K., Vendruscolo, M., Schenk, D., … Toth, G. (2015). Identification of small molecule inhibitors of tau aggregation by targeting monomeric tau as a potential therapeutic approach for tauopathies. Current Alzheimer Research, 12(9), 814–828. doi:10.2174/156720501209151019104951
  • Piplani, P., Sharma, M., Mehta, P., & Malik, R. (2018). N-(4-Hydroxyphenyl)-3,4,5-trimethoxybenzamide derivatives as potential memory enhancers: Synthesis, biological evaluation and molecular simulation studies. Journal of Biomolecular Structure and Dynamics, 36(7), 1867–1877. doi:10.1080/07391102.2017.1336943
  • Qiu, T., Liu, Q., Chen, Y.-X., Zhao, Y.-F., & Li, Y.-M. (2015). Aβ42 and Aβ40: Similarities and differences. Journal of Peptide Science, 21(7), 522–529. doi:10.1002/psc.2789
  • Rahmani, S., Mogharizadeh, L., Attar, F., Rezayat, S. M., Mousavi, S. E., & Falahati, M. (2018). Probing the interaction of silver nanoparticles with tau protein and neuroblastoma cell line as nervous system models. Journal of Biomolecular Structure and Dynamics, 36(15), 4057–4071. doi:10.1080/07391102.2017.1407673
  • Rezaei-Ghaleh, N., Giller, K., Becker, S., & Zweckstetter, M. (2011). Effect of zinc binding on β-amyloid structure and dynamics: Implications for Aβ aggregation. Biophysical Journal, 101(5), 1202–1211. doi:10.1016/j.bpj.2011.06.062
  • Rosenman, D. J., Connors, C. R., Chen, W., Wang, C., & Garcia, A. E. (2013). Aβ monomers transiently sample oligomer and fibril-like configurations: Ensemble characterization using a combined MD/NMR approach. Journal of Molecular Biology, 425(18), 3338–3359. doi:10.1016/j.jmb.2013.06.021
  • Sato, T., Kienlen-Campard, P., Ahmed, M., Liu, W., Li, H., Elliott, J. I., … Smith, S. O. (2006). Inhibitors of amyloid toxicity based on beta-sheet packing of Aβ40 and Aβ42. Biochemistry, 45(17), 5503–5516. doi:10.1021/bi052485f
  • Sgourakis, N. G., Yan, Y. L., McCallum, S. A., Wang, C. Y., & Garcia, A. E. (2007). The Alzheimer’s peptides Aβ40 and 42 adopt distinct conformations in water: A combined MD/NMR study. Journal of Molecular Biology, 368(5), 1448–1457. doi:10.1016/j.jmb.2007.02.093
  • Shiri, F., Pirhadi, S., & Ghasemi, J. B. (2018). Dynamic structure based pharmacophore modeling of the acetylcholinesterase reveals several potential inhibitors. Journal of Biomolecular Structure and Dynamics. doi:10.1080/07391102.2018.1468281
  • Shuaib, S., & Goyal, B. (2018). Scrutiny of the mechanism of small molecule inhibitor preventing conformational transition of amyloid-β42 monomer: Insights from molecular dynamics simulations. Journal of Biomolecular Structure and Dynamics, 36(3), 663–678. doi:10.1080/07391102.2017.1291363
  • Sinha, S., Du, Z., Maiti, P., Klärner, F.-G., Schrader, T., Wang, C., & Bitan, G. (2012). Comparison of three amyloid assembly inhibitors: The sugar scyllo-inositol, the polyphenol epigallocatechin gallate, and the molecular tweezer CLR01. ACS Chemical Neuroscience, 3(6), 451–458. doi:10.1021/cn200133x
  • Sinha, S., Lopes, D. H. J., & Bitan, G. (2012). A key role for lysine residues in amyloid β-protein folding, assembly, and toxicity. ACS Chemical Neuroscience, 3(6), 473–481. doi:10.1021/cn3000247
  • Sinha, S., Lopes, D. H. J., Du, Z., Pang, E. S., Shanmugam, A., Lomakin, A., … Bitan, G. (2011). Lysine-specific molecular tweezers are broad-spectrum inhibitors of assembly and toxicity of amyloid proteins. Journal of the American Chemical Society, 133(42), 16958–16969. doi:10.1021/ja206279b
  • Thirumalai, D., Reddy, G., & Straub, J. E. (2012). Role of water in protein aggregation and amyloid polymorphism. Accounts of Chemical Research, 45(1), 83–92. doi:10.1021/ar2000869
  • Tomiyama, T., Nagata, T., Shimada, H., Teraoka, R., Fukushima, A., Kanemitsu, H., … Mori, H. (2008). A new amyloid β variant favoring oligomerization in Alzheimer's‐type dementia. Annals of Neurology, 63(3), 377–387. doi:10.1002/ana.21321
  • Truong, P. M., Viet, M. H., Nguyen, P. H., Hu, C.-K., & Li, M. S. (2014). Effect of Taiwan mutation (D7H) on structures of amyloid-β peptides: Replica exchange molecular dynamics study. The Journal of Physical Chemistry B, 118(30), 8972–8981. doi:10.1021/jp503652s
  • Urbanc, B., Cruz, L., Yun, S., Buldyrev, S. V., Bitan, G., Teplow, D. B., & Stanley, H. E. (2004). In silico study of amyloid β-protein folding and oligomerization. Proceedings of the National Academy of Sciences of the United States of America, 101(50), 17345–17350. doi:10.1073/pnas.0408153101
  • Van Broeckhoven, C., Haan, J., Bakker, E., Hardy, J., Van Hul, W., Wehnert, A., … Roos, R. (1990). Amyloid beta protein precursor gene and hereditary cerebral hemorrhage with amyloidosis (Dutch). Science, 248(4959), 1120–1122. doi:10.1126/science.1971458
  • van der Spoel, D., & Lindahl, E. (2003). Brute-force molecular dynamics simulations of villin headpiece: Comparison with NMR parameters. The Journal of Physical Chemistry B, 107(40), 11178–11187. doi:10.1021/jp034108n
  • Velez-Vega, C., & Escobedo, F. A. (2011). Characterizing the structural behavior of selected Aβ-42 monomers with different solubilities. The Journal of Physical Chemistry B, 115(17), 4900–4910. doi:10.1021/jp1086575
  • Viet, M. H., & Li, M. S. (2012). Amyloid peptide Aβ40 inhibits aggregation of Aβ42: Evidence from molecular dynamics simulations. The Journal of Chemical Physics, 136(24), 245105. doi:10.1063/1.4730410
  • Viet, M. H., Nguyen, P. H., Derreumaux, P., & Li, M. S. (2014). Effect of the English familial disease mutation (H6R) on the monomers and dimers of Aβ40 and Aβ42. ACS Chemical Neuroscience, 5(8), 646–657. doi:10.1021/cn500007j
  • Viet, M. H., Nguyen, P. H., Ngo, S. T., Li, M. S., & Derreumaux, P. (2013). Effect of the Tottori familial disease mutation (D7N) on the monomers and dimers of Aβ40 and Aβ42. ACS Chemical Neuroscience, 4(11), 1446–1457. doi:10.1021/cn400110d
  • Vuister, G. W., & Bax, A. (1993). Quantitative J correlation: a new approach for measuring homonuclear three-bond J(HNH.alpha.) coupling constants in 15N-enriched proteins. Journal of the American Chemical Society, 115(17), 7772–7777. doi:10.1021/ja00070a024
  • Yang, M., & Teplow, D. B. (2008). Amyloid β-protein monomer folding: Free energy surfaces reveal alloform specific differences. Journal of Molecular Biology, 384(2), 450–464. doi:10.1016/j.jmb.2008.09.039
  • Zganec, M., Kruczek, N., & Urbanc, B. (2016). Amino acid substitutions [K16A] and [K28A] distinctly affect amyloid β-protein oligomerization. Journal of Biological Physics, 42, 453–476. doi:10.1007/s10867-016-9417-4
  • Zhou, R., Huang, X., Margulis, C. J., & Berne, B. J. (2004). Hydrophobic collapse in multidomain protein folding. Science, 305(5690), 1605–1609. doi:10.1126/science.1101176

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.