398
Views
7
CrossRef citations to date
0
Altmetric
Research Articles

Discovery of potential sclerostin inhibitors from plants with loop2 region of sclerostin inhibition by interacting with residues outside Pro-Asn-Ala-Ile-Gly motif

, , &
Pages 1272-1282 | Received 03 Jan 2019, Accepted 20 Mar 2019, Published online: 07 Apr 2019

References

  • Balemans, W., Ebeling, M., Patel, N., Van Hul, E., Olson, P., Dioszegi, M., … Willems, P. (2001). Increased bone density in sclerosteosis is due to the deficiency of a novel secreted protein (SOST). Human Molecular Genetics, 10(5), 537–544. doi: 10.1093/hmg/10.5.537
  • Bayly, C. I., Cieplak, P., Cornell, W., & Kollman, P. A. (1993). A well-behaved electrostatic potential based method using charge restraints for deriving atomic charges: The RESP model. The Journal of Physical Chemistry, 97(40), 10269–10280. doi: 10.1021/j100142a004
  • Beck, D. A., & Daggett, V. (2004). Methods for molecular dynamics simulations of protein folding/unfolding in solution. Methods, 34(1), 112–120. doi: 10.1016/j.ymeth.2004.03.008
  • Boschert, V., van Dinther, M., Weidauer, S., van Pee, K., Muth, E.-M., ten Dijke, P., & Mueller, T. D. (2013). Mutational analysis of sclerostin shows importance of the flexible loop and the cystine-knot for Wnt-signaling inhibition. PLoS One, 8(11), e81710. doi: 10.1371/journal.pone.0081710
  • Bourhis, E., Wang, W., Tam, C., Hwang, J., Zhang, Y., Spittler, D., … Cochran, A. G. (2011). Wnt antagonists bind through a short peptide to the first β-propeller domain of LRP5/6. Structure, 19(10), 1433–1442. doi: 10.1016/j.str.2011.07.005
  • Burley, S., & Petsko, G. A. (1985). Aromatic-aromatic iInteraction: A mechanism of protein structure stabilization. Science, 229(4708), 23–28. doi: 10.1126/science.3892686
  • Chu, W.-T., Zheng, Q.-C., Wu, Y.-J., Zhang, J.-L., Liang, C.-Y., Chen, L., … Zhang, H.-X. (2013). Molecular dynamics (MD) simulations and binding free energy calculation studies between inhibitors and type II dehydroquinase (DHQ2). Molecular Simulation, 39(2), 137–144. doi: 10.1080/08927022.2012.708416
  • Clarke, B. L. (2009). New and emerging treatments for osteoporosis. Clinical Endocrinology, 71(3), 309–321. doi: 10.1111/j.1365-2265.2009.03541.x
  • Clarke, B. L. (2014). Anti-sclerostin antibodies: Utility in treatment of osteoporosis. Maturitas, 78(3), 199–204. doi: 10.1016/j.maturitas.2014.04.016
  • Cosman, F., Crittenden, D. B., Adachi, J. D., Binkley, N., Czerwinski, E., Ferrari, S., … Grauer, A. (2016). Romosozumab treatment in postmenopausal women with osteoporosis. New England Journal of Medicine, 375(16), 1532–1543. doi: 10.1056/NEJMoa1607948
  • Costa, A. G., Bilezikian, J. P., & Lewiecki, E. M. (2014). Update on romosozumab: A humanized monoclonal antibody to sclerostin. Expert Opinion on Biological Therapy, 14(5), 697–707. doi: 10.1517/14712598.2014.895808
  • Crockett, J. C., Rogers, M. J., Coxon, F. P., Hocking, L. J., & Helfrich, M. H. (2011). Bone remodelling at a glance. Journal of Cell Science, 124(Pt 7), 991–998. doi: 10.1242/jcs.063032
  • Cruz, J. N., Costa, J. F., Khayat, A. S., Kuca, K., Barros, C. A., & Neto, A. (2018). Molecular dynamics simulation and binding free energy studies of novel leads belonging to the benzofuran class inhibitors of Mycobacterium tuberculosis polyketide synthase 13. Journal of Biomolecular Structure and Dynamics, 37(6), 1616–1627.
  • De Vries, S. J., Van Dijk, M., & Bonvin, A. M. (2010). The HADDOCK web server for data-driven biomolecular docking. Nature Protocols, 5(5), 883–897. doi: 10.1038/nprot.2010.32
  • Dominguez, C., Boelens, R., & Bonvin, A. M. (2003). HADDOCK: A protein–protein docking approach based on biochemical or biophysical information. Journal of the American Chemical Society, 125(7), 1731–1737. doi: 10.1021/ja026939x
  • Garg, S. K. (2015). Diagnosis & treatment of osteoporosis: Are we doing enough? Journal of Bone Reports & Recommendations, 1, 1–4.
  • Ge, Y., Wu, J., Xiao, J., & Yu, J. (2011). Exploration of the binding mode of α/β-type small acid soluble proteins (SASPs) with DNA. Journal of Molecular Modeling, 17(12), 3183–3193. doi: 10.1007/s00894-011-1007-6
  • Guo, A. J. Y., Choi, R. C. Y., Cheung, A. W. H., Chen, V. P., Xu, S. L., Dong, T. T. X., … Tsim, K. W. K. (2011). Baicalin, a flavone, induces the differentiation of cultured osteoblasts: An action via the Wnt/β-catenin signaling. Journal of Biological Chemistry, 286(32), 27882–27893. doi: 10.1074/jbc.M111.236281
  • Holdsworth, G., Slocombe, P., Doyle, C., Sweeney, B., Veverka, V., Le Riche, K., … Robinson, M. K. (2012). Characterization of the interaction of sclerostin with the low density lipoprotein receptor-related protein (LRP) family of Wnt co-receptors. Journal of Biological Chemistry, 287(32), 26464–26477. doi: 10.1074/jbc.M112.350108
  • International Osteoporosis Foundation. (2011). Osteoporosis fact sheet. Retrieved from http://www.iofbonehealth.org/.
  • Jia, M., Nie, Y., Cao, D. P., Xue, Y. Y., Wang, J. S., Zhao, L., … Qin, L. P. (2012). Potential antiosteoporotic agents from plants: A comprehensive review. Evidence-Based Complementary and Alternative Medicine, 2012, 1–28. doi: 10.1155/2012/364604
  • Jorgensen, W. L., Chandrasekhar, J., Madura, J. D., Impey, R. W., & Klein, M. L. (1983). Comparison of simple potential functions for simulating liquid water. The Journal of Chemical Physics, 79(2), 926–935. doi: 10.1063/1.445869
  • Ke, H. Z., Richards, W. G., Li, X., & Ominsky, M. S. (2012). Sclerostin and dickkopf-1 as therapeutic targets in bone diseases. Endocrine Reviews, 33(5), 747–783. doi: 10.1210/er.2011-1060
  • Kollman, P. A., Massova, I., Reyes, C., Kuhn, B., Huo, S., Chong, L., … Cheatham, T. E. (2000). Calculating structures and free Eeergies of complex molecules: Combining molecular mechanics and continuum models. Accounts of Chemical Research, 33(12), 889–897. doi: 10.1021/ar000033j
  • Lewiecki, E. M., Blicharski, T., Goemaere, S., Lippuner, K., Meisner, P. D., Miller, P. D., … Horlait, S. (2018). A phase 3 randomized placebo-controlled trial to evaluate efficacy and safety of romosozumab in men with osteoporosis. The Journal of Clinical Endocrinology & Metabolism, 103(9), 3183–3193. doi: 10.1210/jc.2017-02163
  • Li, X., Ominsky, M. S., Niu, Q.-T., Sun, N., Daugherty, B., D'Agostin, D., … Paszty, C. (2008). Targeted deletion of the sclerostin gene in mice results in increased bone formation and bone strength. Journal of Bone and Mineral Research: The Official Journal of the American Society for Bone and Mineral Research, 23(6), 860–869. doi: 10.1359/jbmr.080216
  • Li, X., Ominsky, M. S., Warmington, K. S., Morony, S., Gong, J., Cao, J., … Paszty, C. (2009). Sclerostin antibody treatment increases bone formation, bone mass, and bone strength in a rat model of postmenopausal osteoporosis. Journal of Bone and Mineral Research, 24(4), 578–588. doi: 10.1359/jbmr.081206
  • Li, X., Warmington, K. S., Niu, Q.-T., Asuncion, F. J., Barrero, M., Grisanti, M., … Ke, H. Z. (2010). Inhibition of sclerostin by monoclonal antibody increases bone formation, bone mass, and bone strength in aged male rats. Journal of Bone and Mineral Research: The Official Journal of the American Society for Bone and Mineral Research, 25(12), 2647–2656. doi: 10.1002/jbmr.182
  • Li, X., Zhang, Y., Kang, H., Liu, W., Liu, P., Zhang, J., … Wu, D. (2005). Sclerostin binds to LRP5/6 and antagonizes canonical Wnt signaling. Journal of Biological Chemistry, 280(20), 19883–19887. doi: 10.1074/jbc.M413274200
  • Maier, J. A., Martinez, C., Kasavajhala, K., Wickstrom, L., Hauser, K. E., & Simmerling, C. (2015). ff14SB: Improving the accuracy of protein side chain and backbone parameters from ff99SB. Journal of Chemical Theory and Computation, 11(8), 3696–3713. doi: 10.1021/acs.jctc.5b00255
  • Makras, P., Delaroudis, S., & Anastasilakis, A. D. (2015). Novel therapies for osteoporosis. Metabolism: Clinical and Experimental, 64(10), 1199–1214. doi: 10.1016/j.metabol.2015.07.011
  • Miller, B. R., III, McGee, T. D., Jr, Swails, J. M., Homeyer, N., Gohlke, H., & Roitberg, A. E. (2012). MMPBSA.py: An efficient program for end-state free energy calculations. Journal of Chemical Theory and Computation, 8(9), 3314–3321. doi: 10.1021/ct300418h
  • Nadvorny, D., Soares-Sobrinho, J. L., de La Roca Soares, M. F., Ribeiro, A. J., Veiga, F., & Seabra, G. M. (2018). Molecular dynamics simulations reveal the influence of dextran sulfate in nanoparticle formation with calcium alginate to encapsulate insulin. Journal of Biomolecular Structure and Dynamics, 36(5), 1255–1260. doi: 10.1080/07391102.2017.1318305
  • Onufriev, A., Bashford, D., & Case, D. A. (2004). Exploring protein native states and large‐scale conformational changes with a modified generalized born model. Proteins: Structure, Function, and Bioinformatics, 55(2), 383–394. doi: 10.1002/prot.20033
  • Pastor, R. W., Brooks, B. R., & Szabo, A. (1988). An analysis of the accuracy of langevin and molecular dynamics algorithms. Molecular Physics, 65(6), 1409–1419. doi: 10.1080/00268978800101881
  • Pradiba, D., Aarthy, M., Shunmugapriya, V., Singh, S. K., & Vasanthi, M. (2018). Structural insights into the binding mode of flavonols with the active site of matrix metalloproteinase-9 through molecular docking and molecular dynamic simulations studies. Journal of Biomolecular Structure and Dynamics, 36(14), 3718–3739. doi: 10.1080/07391102.2017.1397058
  • Roe, D. R., & Cheatham, T. E. III, (2013). PTRAJ and CPPTRAJ: Software for processing and analysis of molecular dynamics trajectory data. Journal of Chemical Theory and Computation, 9(7), 3084–3095. doi: 10.1021/ct400341p
  • Ryckaert, J. P., Ciccotti, G., & Berendsen, H. J. (1977). Numerical integration of the Cartesian equations of motion of a system with constraints: Molecular dynamics of n-alkanes. Journal of Computational Physics, 23(3), 327–341. doi: 10.1016/0021-9991(77)90098-5
  • Saag, K. G., Petersen, J., Brandi, M. L., Karaplis, A. C., Lorentzon, M., Thomas, T., … Grauer, A. (2017). Romosozumab or alendronate for fracture prevention in women with osteoporosis. New England Journal of Medicine, 377(15), 1417–1427. doi: 10.1056/NEJMoa1708322
  • Silverman, S. L. (2010). Sclerostin. Journal of Osteoporosis, 2010, 1–3. doi: 10.4061/2010/941419
  • Suen, P. K., & Qin, L. (2016). Sclerostin, an emerging therapeutic target for treating osteoporosis and osteoporotic fracture: A general review. Journal of Orthopaedic Translation, 4, 1–13. doi: 10.1016/j.jot.2015.08.004
  • Veverka, V., Henry, A. J., Slocombe, P. M., Ventom, A., Mulloy, B., Muskett, F. W., … Carr, M. D. (2009). Characterization of the structural features and interactions of sclerostin molecular insight into a key regulator of Wnt-mediated bone formation. Journal of Biological Chemistry, 284(16), 10890–10900. doi: 10.1074/jbc.M807994200
  • Wang, J., Hou, T., & Xu, X. (2006). Recent advances in free energy calculations with a combination of molecular mechanics and continuum models. Current Computer Aided-Drug Design, 2(3), 287–306. doi: 10.2174/157340906778226454
  • Weiser, J., Shenkin, P. S., & Still, W. C. (1999). Approximate atomic surfaces from linear combinations of pairwise overlaps (LCPO). Journal of Computational Chemistry, 20(2), 217–230. doi: 10.1002/(SICI)1096-987X(19990130)20:2<217::AID-JCC4>3.0.CO;2-A
  • Williams, L. D. (2018). Molecular interactions (noncovalent interactions) in biochemical systems. Retrieved from https://ww2.chemistry.gatech.edu
  • Yavropoulou, M. P., Xygonakis, C., Lolou, M., Karadimou, F., & Yovos, J. G. (2014). The sclerostin story: From human genetics to the development of novel anabolic treatment for osteoporosis. Hormones, 13(4), 476–487.
  • Zacharias, N., & Dougherty, D. A. (2002). Cation–π interactions in ligand recognition and catalysis. Trends in Pharmacological Sciences, 23(6), 281–287. doi: 10.1016/S0165-6147(02)02027-8

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.