237
Views
4
CrossRef citations to date
0
Altmetric
Research Articles

Computational approach identifies protein off-targets for Isoniazid-NAD adduct: hypothesizing a possible drug resistance mechanism in Mycobacterium tuberculosis

, , , , , & show all
Pages 1697-1710 | Received 07 Mar 2019, Accepted 29 Apr 2019, Published online: 16 May 2019

References

  • Agren, D., Schnell, R., Oehlmann, W., Singh, M., & Schneider, G. (2008). Cysteine synthase (CysM) of Mycobacterium tuberculosis is an O-phosphoserine sulfhydrylase: Evidence for an alternative cysteine biosynthesis pathway in mycobacteria. Journal of Biological Chemistry, 283(46), 31567–31574. doi: 10.1074/jbc.M804877200
  • Altschul, S. F., Madden, T. L., Schaffer, A. A., Zhang, J., Zhang, Z., Miller, W., & Lipman, D. J. (1997). Gapped BLAST and PSI-BLAST: A new generation of protein database search programs. Nucleic Acids Research, 25(17), 3389–3402. Retrieved from https://www.ncbi.nlm.nih.gov/pubmed/9254694 doi: 10.1093/nar/25.17.3389
  • Apweiler, R., Bairoch, A., Wu, C. H., Barker, W. C., Boeckmann, B., Ferro, S., … Yeh, L. S. (2004). UniProt: The Universal Protein knowledgebase. Nucleic Acids Res, 32 (Database issue), D115–119. doi: 10.1093/nar/gkh131
  • Argyrou, A., Jin, L., Siconilfi-Baez, L., Angeletti, R. H., & Blanchard, J. S. (2006). Proteome-wide profiling of isoniazid targets in Mycobacterium tuberculosis. Biochemistry, 45(47), 13947–13953. doi: 10.1021/bi061874m
  • Banerjee, A., Dubnau, E., Quemard, A., Balasubramanian, V., Um, K., Wilson, T., … Jacobs, W. Jr.(1994). inhA, a gene encoding a target for isoniazid and ethionamide in Mycobacterium tuberculosis. Science, 263(5144), 227–230. Retrieved from https://www.ncbi.nlm.nih.gov/pubmed/8284673 doi: 10.1126/science.8284673
  • Behmard, E., Najafi, A., & Ahmadi, A. (2019). Understanding the resistance mechanism of penicillin binding protein 1a mutant against cefotaxime using molecular dynamic simulation. Journal of Biomolecular Structure and Dynamics, 37(3), 741–749. doi: 10.1080/07391102.2018.1439404
  • Beste, D. J., Hooper, T., Stewart, G., Bonde, B., Avignone-Rossa, C., Bushell, M. E., … McFadden, J. (2007). GSMN-TB: A web-based genome-scale network model of Mycobacterium tuberculosis metabolism. Genome Biology, 8(5), R89. p doi: 10.1186/gb-2007-8-5-r89
  • Boshoff, H. I. M., Xu, X., Tahlan, K., Dowd, C. S., Pethe, K., Camacho, L. R. (2008). Biosynthesis and recycling of nicotinamide cofactors in Mycobacterium tuberculosis. An essential role for NAD in nonreplicating bacilli. Journal of Biological Chemistry, 283(28), 19329–19341. doi: 10.1074/jbc.M800694200
  • Bowie, J. U., Reidhaar-Olson, J. F., Lim, W. A., & Sauer, R. T. (1990). Deciphering the message in protein sequences: Tolerance to amino acid substitutions. Science, 247(4948), 1306–1310. Retrieved from https://www.ncbi.nlm.nih.gov/pubmed/2315699 doi: 10.1126/science.2315699
  • Brameld, K. A., Kuhn, B., Reuter, D. C., & Stahl, M. (2008). Small molecule conformational preferences derived from crystal structure data. A medicinal chemistry focused analysis. Journal of Chemical Information and Modeling, 48(1), 1–24. doi: 10.1021/ci7002494
  • Burley, S. K., Berman, H. M., Kleywegt, G. J., Markley, J. L., Nakamura, H., & Velankar, S. (2017). Protein Data Bank (PDB): The single global macromolecular structure archive. Methods of Molecular Biology, 1607, 627–641. doi: 10.1007/978-1-4939-7000-1_26
  • Burns, K. E., Baumgart, S., Dorrestein, P. C., Zhai, H., McLafferty, F. W., & Begley, T. P. (2005). Reconstitution of a new cysteine biosynthetic pathway in Mycobacterium tuberculosis. Journal of the American Chemical Society, 127(33), 11602–11603. doi: 10.1021/ja053476x
  • Chen, J., Long, R., Wang, X. L., Liu, B., & Chou, K. C. (2016). dRHP-PseRA: Detecting remote homology proteins using profile-based pseudo protein sequence and rank aggregation. Scientific Reports, 6, 32333. doi: 10.1038/srep32333
  • Chen, P., & Bishai, W. R. (1998). Novel selection for isoniazid (INH) resistance genes supports a role for NAD+-binding proteins in mycobacterial INH resistance. Infection and Immunity, 66(11), 5099–5106. Retrieved from https://www.ncbi.nlm.nih.gov/pubmed/9784509
  • Eddy, S. R. (1996). Hidden Markov models. Current Opinion in Structural Biology, 6(3), 361–365. Retrieved from https://www.ncbi.nlm.nih.gov/pubmed/8804822 doi: 10.1016/S0959-440X(96)80056-X
  • Eisenberg, D., Luthy, R., & Bowie, J. U. (1997). VERIFY3D: Assessment of protein models with three-dimensional profiles. Methods in Enzymology, 277, 396–404. Retrieved from https://www.ncbi.nlm.nih.gov/pubmed/9379925
  • Elokely, K. M., & Doerksen, R. J. (2013). Docking challenge: Protein sampling and molecular docking performance. Journal of Chemical Information and Modeling, 53(8), 1934–1945. doi: 10.1021/ci400040d
  • Eswar, N., Webb, B., Marti-Renom, M. A., Madhusudhan, M. S., Eramian, D., Shen, M. Y., … Sali, A. (2006). Comparative protein structure modeling using Modeller. Current Protocols in Bioinformatics,15(1), 5–6. doi: 10.1002/0471250953.bi0506s15
  • Fox, H. H. (1952). The chemical approach to the control of tuberculosis. Science (New York, N.Y.), 116(3006), 129–134. Retrieved from http://www.jstor.org/stable/1680129
  • Fuller, J. C., Martinez, M., Henrich, S., Stank, A., Richter, S., & Wade, R. C. (2015). LigDig: A web server for querying ligand-protein interactions. Bioinformatics, 31(7), 1147–1149. doi: 10.1093/bioinformatics/btu784
  • Godzik, A. (2003). Fold recognition methods. Methods of Biochemical Analysis, 44, 525–546. Retrieved from https://www.ncbi.nlm.nih.gov/pubmed/12647403
  • Grant, B. J., Rodrigues, A. P., ElSawy, K. M., McCammon, J. A., & Caves, L. S. (2006). Bio3d: An R package for the comparative analysis of protein structures. Bioinformatics, 22(21), 2695–2696. doi: 10.1093/bioinformatics/btl461
  • Gurvitz, A., Hiltunen, J. K., & Kastaniotis, A. J. (2008). Function of heterologous Mycobacterium tuberculosis InhA, a type 2 fatty acid synthase enzyme involved in extending C20 fatty acids to C60-to-C90 mycolic acids, during de novo lipoic acid synthesis in Saccharomyces cerevisiae. Applied and Environmental Microbiology, 74(16), 5078–5085. doi: 10.1128/AEM.00655-08
  • Hao, M. H., Haq, O., & Muegge, I. (2007). Torsion angle preference and energetics of small-molecule ligands bound to proteins. Journal of Chemical Information and Modeling, 47(6), 2242–2252. doi: 10.1021/ci700189s
  • Hassan, S., Debnath, A., Mahalingam, V., & Hanna, L. E. (2012). Computational structural analysis of proteins of Mycobacterium tuberculosis and a resource for identifying off-targets. Journal of Molecular Modeling, 18(8), 3993–4004. doi: 10.1007/s00894-012-1412-5
  • Hillas, P. J., del Alba, F. S., Oyarzabal, J., Wilks, A., & Ortiz De Montellano, P. R. (2000). The AhpC and AhpD antioxidant defense system of Mycobacterium tuberculosis. Journal of Biological Chemistry, 275(25), 18801–18809. doi: 10.1074/jbc.M001001200
  • Illergard, K., Ardell, D. H., & Elofsson, A. (2009). Structure is three to ten times more conserved than sequence – A study of structural response in protein cores. Proteins: Structure, Function, and Bioinformatics, 77(3), 499–508. doi: 10.1002/prot.22458
  • Jagadeb, M., Rath, S. N., & Sonawane, A. (2018). In silico discovery of potential drug molecules to improve the treatment of isoniazid-resistant Mycobacterium tuberculosis. Journal of Biomolecular Structure and Dynamics, 1–11. doi: 10.1080/07391102.2018.1515116
  • Jena, L., Deshmukh, S., Waghmare, P., Kumar, S., & Harinath, B. C. (2015). Study of mechanism of interaction of truncated isoniazid-nicotinamide adenine dinucleotide adduct against multiple enzymes of Mycobacterium tuberculosis by a computational approach. International Journal of Mycobacteriology, 4(4), 276–283. doi: 10.1016/j.ijmyco.2015.06.006
  • Jones, G., Willett, P., Glen, R. C., Leach, A. R., & Taylor, R. (1997). Development and validation of a genetic algorithm for flexible docking. Journal of Molecular Biology, 267(3), 727–748. doi: 10.1006/jmbi.1996.0897
  • Klebe, G., & Mietzner, T. (1994). A fast and efficient method to generate biologically relevant conformations. Journal of Computer-Aided Molecular Design, 8(5), 583–606. Retrieved from https://www.ncbi.nlm.nih.gov/pubmed/7876902 doi: 10.1007/BF00123667
  • Krissinel, E., & Henrick, K. (2004). Secondary-structure matching (SSM), a new tool for fast protein structure alignment in three dimensions. Acta Crystallographica Section D Biological Crystallography, 60(12), 2256–2268. doi: 10.1107/S0907444904026460
  • Laskowski, R., MacArthur, M., & Thornton, J. (2006). PROCHECK: Validation of protein-structure coordinates. International Tables for Crystallography (Vol. F, ch. 25.2, pp. 722–725).
  • Laskowski, R. A., Jabłońska, J., Pravda, L., Vařeková, R. S., & Thornton, J. M. (2018). PDBsum: Structural summaries of PDB entries. Protein Science, 27(1), 129–134. doi: 10.1002/pro.3289
  • Lei, B., Wei, C. J., & Tu, S. C. (2000). Action mechanism of antitubercular isoniazid. Activation by Mycobacterium tuberculosis KatG, isolation, and characterization of inha inhibitor. The Journal of Biological Chemistry, 275(4), 2520–2526.
  • Lesk, A. M., & Chothia, C. J. (1980). How different amino acid sequences determine similar protein structures: The structure and evolutionary dynamics of the globins. Journal of molecular biology, 136(3), 225–270. doi: 10.1016/0022-2836(80)90373-3
  • Macrae, C. F., Bruno, I. J., Chisholm, J. A., Edgington, P. R., McCabe, P., Pidcock, E., … Wood, P. A. J. (2008). Mercury CSD 2.0 – New features for the visualization and investigation of crystal structures. Journal of Applied Crystallography, 41(2), 466–470. doi: 10.1107/S0021889807067908
  • Massengo-Tiasse, R. P., & Cronan, J. E. (2009). Diversity in enoyl-acyl carrier protein reductases. Cellular and Molecular Life Sciences, 66(9), 1507–1517. doi: 10.1007/s00018-009-8704-7
  • Mbaye, M. N., Gilis, D., & Rooman, M. (2019). Rational antibiotic design: In silico structural comparison of the functional cavities of penicillin-binding proteins and ss-lactamases. Journal of Biomolecular Structure and Dynamics, 37(1), 65–74. doi: 10.1080/07391102.2017.1418678
  • Melville, K. I., & Stehle, R. L. (1944). Chemotherapy in experimental tuberculosis. Canadian Journal of Research, 22e(5), 95–121. doi: 10.1139/cjr44e-010
  • Middlebrook, G., & Cohn, M. L. (1953). Some observations on the pathogenicity of isoniazid-resistant variants of tubercle bacilli. Science (New York, N.Y.), 118(3063), 297–299. Retrieved from https://www.ncbi.nlm.nih.gov/pubmed/13089681
  • Pan, X., Zhang, H., Gao, Y., Li, M., & Chang, W. (2009). Crystal structures of Pseudomonas syringae pv. tomato DC3000 quinone oxidoreductase and its complex with NADPH. Biochemical and Biophysical Research Communication, 390(3), 597–602. doi: 10.1016/j.bbrc.2009.10.012
  • Parsa, K., & Hasnain, S. E. (2015). Proteomics of multidrug resistant Mycobacterium tuberculosis clinical isolates: A peep show on mechanism of drug resistance & perhaps more. Indian Journal of Medical Research, 141(1), 8–9. doi: 10.4103/0971-5916.154485
  • Payton, M., Auty, R., Delgoda, R., Everett, M., & Sim, E. (1999). Cloning and characterization of arylamine N-acetyltransferase genes from Mycobacterium smegmatis and Mycobacterium tuberculosis: Increased expression results in isoniazid resistance. Journal of Bacteriology, 181(4), 1343–1347. Retrieved from https://www.ncbi.nlm.nih.gov/pubmed/9973365
  • Persson, B., Zigler, J. S., Jr., & Jornvall, H. (1994). A super-family of medium-chain dehydrogenases/reductases (MDR). Sub-lines including zeta-crystallin, alcohol and polyol dehydrogenases, quinone oxidoreductase enoyl reductases, VAT-1 and other proteins. European Journal of Biochemistry, 226(1), 15–22. Retrieved from https://www.ncbi.nlm.nih.gov/pubmed/7957243 doi: 10.1111/j.1432-1033.1994.tb20021.x
  • Potter, S. C., Luciani, A., Eddy, S. R., Park, Y., Lopez, R., & Finn, R. D. (2018). HMMER web server: 2018 update. Nucleic Acids Research, 46(W1), W200–W204. doi: 10.1093/nar/gky448
  • Ptitsyn, O. B., & Finkelstein, A. V. (1980). Similarities of protein topologies: Evolutionary divergence, functional convergence or principles of folding?. Quarterly Reviews of Biophysics, 13(03), 339–386. Retrieved from https://www.ncbi.nlm.nih.gov/pubmed/7012894 doi: 10.1017/S0033583500001724
  • Raman, K., Yeturu, K., & Chandra, N. (2008). targetTB: A target identification pipeline for Mycobacterium tuberculosis through an interactome, reactome and genome-scale structural analysis. BMC Systems Biology, 2(1), 109. doi: 10.1186/1752-0509-2-109
  • Richardson, J. S. (1977). beta-Sheet topology and the relatedness of proteins. Nature, 268(5620), 495–500. Retrieved from https://www.ncbi.nlm.nih.gov/pubmed/329147
  • Rodionova, I. A., Schuster, B. M., Guinn, K. M., Sorci, L., Scott, D. A., Li, X., … Osterman, A. L. (2014). Metabolic and bactericidal effects of targeted suppression of NadD and NadE enzymes in mycobacteria. MBio, 5(1), e00747–13. doi: 10.1128/mBio.00747-13
  • Rodrigues, V. S., Jr., Breda, A., Santos, D. S., & Basso, L. A. (2009). The conserved Lysine69 residue plays a catalytic role in Mycobacterium tuberculosis shikimate dehydrogenase. BMC Research Notes, 2(1), 227. doi: 10.1186/1756-0500-2-227
  • Rohart, F., Gautier, B., Singh, A., & Le Cao, K. A. (2017). mixOmics: An R package for 'omics feature selection and multiple data integration. PLoS Computational Biology, 13(11), e1005752. p doi: 10.1371/journal.pcbi.1005752
  • Rozwarski, D. A., Grant, G. A., Barton, D. H., Jacobs, W. R., Jr., & Sacchettini, J. C. (1998). Modification of the NADH of the isoniazid target (InhA) from Mycobacterium tuberculosis. Science, 279(5347), 98–102. Retrieved from https://www.ncbi.nlm.nih.gov/pubmed/9417034 doi: 10.1126/science.279.5347.98
  • Rozwarski, D. A., Vilcheze, C., Sugantino, M., Bittman, R., & Sacchettini, J. C. (1999). Crystal structure of the Mycobacterium tuberculosis enoyl-ACP reductase, InhA, in complex with NAD + and a C16 fatty acyl substrate. Journal of Biological Chemistry, 274(22), 15582–15589. Retrieved from https://www.ncbi.nlm.nih.gov/pubmed/10336454 doi: 10.1074/jbc.274.22.15582
  • Shulman-Peleg, A., Shatsky, M., Nussinov, R., & Wolfson, H. J. (2008). MultiBind and MAPPIS: Webservers for multiple alignment of protein 3D-binding sites and their interactions. Nucleic Acids Res, 36(Web Server), W260–264. doi: 10.1093/nar/gkn185
  • Sievers, F., Wilm, A., Dineen, D., Gibson, T. J., Karplus, K., Li, W., … Higgins, D. G. (2014). Fast, scalable generation of high-quality protein multiple sequence alignments using Clustal Omega. Molecular Systems Biology, 7(1), 539. p doi: 10.1038/msb.2011.75
  • Singh, A., Gopinath, K., Sharma, P., Bisht, D., Sharma, P., Singh, N., & Singh, S. (2015). Comparative proteomic analysis of sequential isolates of Mycobacterium tuberculosis from a patient with pulmonary tuberculosis turning from drug sensitive to multidrug resistant. Indian Journal of Medical Research, 141(1), 27–45. Retrieved from https://www.ncbi.nlm.nih.gov/pubmed/25857493 doi: 10.4103/0971-5916.154492
  • Singhal, N., Sharma, P., Kumar, M., Joshi, B., & Bisht, D. (2012). Analysis of intracellular expressed proteins of Mycobacterium tuberculosis clinical isolates. Proteome Science, 10(1), 14. p doi: 10.1186/1477-5956-10-14
  • Sorci, L., Pan, Y., Eyobo, Y., Rodionova, I., Huang, N., Kurnasov, O., … Osterman, A. L. (2009). Targeting NAD biosynthesis in bacterial pathogens: Structure-based development of inhibitors of nicotinate mononucleotide adenylyltransferase NadD. Chemical Biology, 16(8), 849–861. doi: 10.1016/j.chembiol.2009.07.006
  • Stigliani, J. L., Arnaud, P., Delaine, T., Bernardes-Genisson, V., Meunier, B., & Bernadou, J. (2008). Binding of the tautomeric forms of isoniazid-NAD adducts to the active site of the Mycobacterium tuberculosis enoyl-ACP reductase (InhA): A theoretical approach. Journal of Molecular Graphics andModelling, 27(4), 536–545. doi: 10.1016/j.jmgm.2008.09.006
  • Sun, Y. J., Lee, A. S., Wong, S. Y., & Paton, N. I. (2007). Analysis of the role of Mycobacterium tuberculosis kasA gene mutations in isoniazid resistance. Clinical Microbiology and Infection, 13(8), 833–835. doi: 10.1111/j.1469-0691.2007.01752.x
  • Takayama, K., Wang, L., & David, H. L. (1972). Effect of isoniazid on the in vivo mycolic acid synthesis, cell growth, and viability of Mycobacterium tuberculosis. Antimicrobial Agents and Chemotherapy, 2(1), 29–35. Retrieved from https://www.ncbi.nlm.nih.gov/pubmed/4208567 doi: 10.1128/AAC.2.1.29
  • Theobald, D. L., & Wuttke, D. S. (2005). Divergent evolution within protein superfolds inferred from profile-based phylogenetics. Journal of Molecular Biology, 354(3), 722–737. doi: 10.1016/j.jmb.2005.08.071
  • Thorn, J. M., Barton, J. D., Dixon, N. E., Ollis, D. L., & Edwards, K. J. (1995). Crystal structure of Escherichia coli QOR quinone oxidoreductase complexed with NADPH. Journal of Molecular Biology, 249(4), 785–799. doi: 10.1006/jmbi.1995.0337
  • Verma, P., Maurya, P., Tiwari, M., & Tiwari, V. (2019). In-silico interaction studies suggest RND efflux pump mediates polymyxin resistance in Acinetobacter baumannii. Journal of Biomolecular Structure and Dynamics, 37(1), 95–103. doi: 10.1080/07391102.2017.1418680
  • Vilcheze, C., Wang, F., Arai, M., Hazbon, M. H., Colangeli, R., Kremer, L., … Jacobs, W. R. Jr.(2006). Transfer of a point mutation in Mycobacterium tuberculosis inhA resolves the target of isoniazid. Nature Medicine, 12(9), 1027–1029. doi: 10.1038/nm1466
  • Vilcheze, C., Weisbrod, T. R., Chen, B., Kremer, L., Hazbon, M. H., Wang, F., … Jacobs, W. R. Jr.(2005). Altered NADH/NAD + ratio mediates coresistance to isoniazid and ethionamide in mycobacteria. Antimicrobial Agents and Chemotherapy, 49(2), 708–720. doi: 10.1128/AAC.49.2.708-720.2005
  • Wiederstein, M., & Sippl, M. J. (2007). ProSA-web: Interactive web service for the recognition of errors in three-dimensional structures of proteins. Nucleic Acids Research, 35(Web Server)Web Server issue), W407–410. doi: 10.1093/nar/gkm290
  • Wolff, K. A., de la Pena, A. H., Nguyen, H. T., Pham, T. H., Amzel, L. M., Gabelli, S. B., & Nguyen, L. (2015). A redox regulatory system critical for mycobacterial survival in macrophages and biofilm development. PLoS Pathogens, 11(4), e1004839. doi: 10.1371/journal.ppat.1004839
  • Yruela, I., Contreras-Moreira, B., Magalhaes, C., Osorio, N. S., & Gonzalo-Asensio, J. (2016). Mycobacterium tuberculosis complex exhibits lineage-specific variations affecting protein ductility and epitope recognition. Genome Biology and Evolution, 8(12), 3751–3764. doi: 10.1093/gbe/evw279
  • Zhang, Y., Heym, B., Allen, B., Young, D., & Cole, S. (1992). The catalase-peroxidase gene and isoniazid resistance of Mycobacterium tuberculosis. Nature, 358(6387), 591–593. doi: 10.1038/358591a0
  • Zheng, Q., Song, Y., Zhang, W., Shaw, N., Zhou, W., & Rao, Z. (2015). Structural views of quinone oxidoreductase from Mycobacterium tuberculosis reveal large conformational changes induced by the co-factor. FEBS Journal, 282(14), 2697–2707. doi: 10.1111/febs.13312

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.