304
Views
18
CrossRef citations to date
0
Altmetric
Research Articles

Evaluation of DNA, BSA binding, DNA cleavage and antimicrobial activity of ytterbium(III) complex containing 2,2'-bipyridine ligand

, , , &
Pages 1711-1725 | Received 07 Apr 2019, Accepted 29 Apr 2019, Published online: 27 May 2019

References

  • Alfi, N., Khorasani-Motlagh, M., & Noroozifar, M. (2017). Evaluation DNA-/BSA-binding properties of a new europium complex containing 2, 9-dimethyl-1, 10-phenanthroline. Journal of Biomolecular Structure & Dynamics, 35(7), 1518–1528. doi:10.1080/07391102.2016.1188419
  • Ali, M., Kumar, A., Kumar, M., & Pandey, B. N. (2016). The interaction of human serum albumin with selected lanthanide and actinide ions: Binding affinities, protein unfolding and conformational changes. Biochimie, 123, 117–129. doi:10.1016/j.biochi.2016.01.012 doi:10.1016/j.biochi.2016.01.012
  • Amoroso, A. J., & Pope, S. J. A. (2015). Using lanthanide ions in molecular bioimaging. Chemical Society Reviews, 44(14), 4723–4742. doi:10.1039/C4CS00293H
  • Anbu, S., Kamalraj, S., Varghese, B., Muthumary, J., & Kandaswamy, M. (2012). A series of oxyimine-based macrocyclic dinuclear zinc (II) complexes enhances phosphate ester hydrolysis, DNA binding, DNA hydrolysis, and lactate dehydrogenase inhibition and induces apoptosis. Inorganic Chemistry, 51(10), 5580–5592. doi:10.1021/ic202451e
  • Anjomshoa, M., Fatemi, S. J., Torkzadeh-Mahani, M., & Hadadzadeh, H. (2014). DNA- and BSA-binding studies and anticancer activity against human breast cancer cells (MCF-7) of the zinc(II) complex coordinated by 5,6-diphenyl-3-(2-pyridyl)-1,2,4-triazine. Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy, 127, 511–520. doi:10.1016/j.saa.2014.02.048 doi:10.1016/j.saa.2014.02.048
  • Aramesh-Boroujeni, Z., Bordbar, A.-K., Khorasani-Motlagh, M., Fani, N., Sattarinezhad, E., & Noroozifar, M. (2018). Computational and experimental study on the interaction of three novel rare earth complexes containing 2, 9-dimethyl-1, 10-phenanthroline with human serum albumin. Journal of the Iranian Chemical Society, 15(7), 1581–1591. doi:10.1007/s13738-018-1356-5 doi:10.1007/s13738-018-1356-5
  • Aramesh-Boroujeni, Z., Bordbar, A.-K., Khorasani-Motlagh, M., Sattarinezhad, E., Fani, N., & Noroozifar, M. (2019). Synthesis, characterization, and binding assessment with human serum albumin of three bipyridine lanthanide (III) complexes. Journal of Biomolecular Structure & Dynamics, 37(6), 1438–1450. doi:10.1080/07391102.2018.1464959
  • Aramesh-Boroujeni, Z., Khorasani-Motlagh, M., & Noroozifar, M. (2016). Multispectroscopic DNA-binding studies of a terbium (III) complex containing 2, 2′-bipyridine ligand. Journal of Biomolecular Structure & Dynamics, 34(2), 414–426. doi:10.1080/07391102.2015.1038585
  • Biswas, N., Saha, S., Khanra, S., Sarkar, A., Prasad Mandal, D., Bhattacharjee, S., … Roy Choudhury, C. (2018). Example of two novel thiocyanato bridged copper (II) complexes derived from substituted thiosemicarbazone ligand: Structural elucidation, DNA/albumin binding, biological profile analysis, and molecular docking study. Journal of Biomolecular Structure & Dynamics, 1–22. doi:10.1080/07391102.2018.1503564
  • Bolel, P., Mahapatra, N., & Halder, M. (2012). Optical spectroscopic exploration of binding of cochineal red A with two homologous serum albumins. Journal of Agricultural & Food Chemistry, 60(14), 3727–3734. doi:10.1021/jf205219w
  • Bordbar, M., Tabatabaee, M., Yeganeh Faal, A., Mehri Lighvan, Z., & Fazaeli, R. (2015). DNA binding properties of water-soluble mixed ligand nickel (II) complex with calf-thymus DNA using different instrumental methods. Synthesis & Reactivity in Inorganic, Metal-Organic, & Nano-Metal Chemistry, 45(12), 1882–1888. doi:10.1080/15533174.2014.900627
  • Budagumpi, S., Kulkarni, N. V., Kurdekar, G. S., Sathisha, M., & Revankar, V. K. (2010). Synthesis and spectroscopy of CoII, NiII, CuII and ZnII complexes derived from 3, 5-disubstituted-1H-pyrazole derivative: A special emphasis on DNA binding and cleavage studies. European Journal of Medicinal Chemistry, 45(2), 455–462. doi:10.1016/j.ejmech.2009.10.026
  • Buddanavar, A. T., & Nandibewoor, S. T. (2017). Multi-spectroscopic characterization of bovine serum albumin upon interaction with atomoxetine. Journal of Pharmaceutical Analysis, 7(3), 148–155. doi:10.1016/j.jpha.2016.10.001
  • Cankaya, M., Hernandez, A., Ciftci, M., Beydemir, S., Ozdemir, H., Budak, H., … Kufrevioglu, O. (2007). An analysis of expression patterns of genes encoding proteins with catalytic activities. BMC Genomics, 8(1), 232. doi:10.1186/1471-2164-8-232
  • Cârâc, A., Boscencu, R., Dinică, R. M., Guerreiro, J. F., Silva, F., Marques, F., … Tăbăcaru, A. (2018). Synthesis, characterization and antitumor activity of two new dipyridinium ylide based lanthanide (III) complexes. Inorganica Chimica Acta, 480, 83–90. doi:10.1016/j.ica.2018.05.003
  • Chaveerach, U., Meenongwa, A., Trongpanich, Y., Soikum, C., & Chaveerach, P. (2010). DNA binding and cleavage behaviors of copper(II) complexes with amidino-O-methylurea and N-methylphenyl-amidino-O-methylurea, and their antibacterial activities. Polyhedron, 29(2), 731–738. doi:10.1016/j.poly.2009.10.031 doi:10.1016/j.poly.2009.10.031
  • Chen, Z.-F., Tan, M.-X., Liu, Y.-C., Peng, Y., Wang, H.-H., Liu, H.-G., & Liang, H. (2011). Synthesis, characterization and preliminary cytotoxicity evaluation of five Lanthanide (III)–Plumbagin complexes. Journal of Inorganic Biochemistry, 105(3), 426–434. doi:10.1016/j.jinorgbio.2010.12.003
  • Cui, F., Hui, G., Jiang, X., & Zhang, G. (2012). Interaction of 3′-azido-3′-deamino daunorubicin with DNA: Multispectroscopic and molecular modeling. International Journal of Biological Macromolecules, 50(4), 1121–1126. doi:10.1016/j.ijbiomac.2012.02.007
  • Cui, F., Huo, R., Hui, G., Lv, X., Jin, J., Zhang, G., & Xing, W. (2011). Study on the interaction between aglycon of daunorubicin and calf thymus DNA by spectroscopy. Journal of Molecular Structure, 1001(1–3), 104–110. doi:10.1016/j.molstruc.2011.06.024
  • Fani, N., Bordbar, A.-K., & Ghayeb, Y. (2013). Spectroscopic, docking and molecular dynamics simulation studies on the interaction of two Schiff base complexes with human serum albumin. Journal of Luminescence, 141, 166–172. doi:10.1016/j.jlumin.2013.03.001
  • Ferré, X. M. (2004). Crystal growth, optical characterisation and laser operation of Yb3+ in monoclinic double tungstates [Doctoral dissertation]. Rovira i Virgili University.
  • Fricker, S. P. (2006). The therapeutic application of lanthanides. Chemical Society Reviews, 35(6), 524–533. doi:10.1039/b509608c
  • Gülçin, İ., Kireçci, E., Akkemik, E., Topal, F., & Hisar, O. (2010). Antioxidant and antimicrobial activities of an aquatic plant: Duckweed (Lemna minor L.). Turkish Journal of Biology, 34(2), 175–188.
  • Gülçin, İ., Küfrevioǧlu, Ö. İ., Oktay, M., & Büyükokuroǧlu, M. E. (2004). Antioxidant, antimicrobial, antiulcer and analgesic activities of nettle (Urtica dioica L.). Journal of Ethnopharmacology, 90(2–3), 205–215. doi:10.1016/j.jep.2003.09.028
  • He, D., Wang, L., Wang, L., Li, X., & Xu, Y. (2017). Spectroscopic studies on the interactions between novel bisnaphthalimide derivatives and calf thymus DNA. Journal of Photochemistry & Photobiology B: Biology, 166, 333–340. doi:10.1016/j.jphotobiol.2016.12.003 doi:10.1016/j.jphotobiol.2016.12.003
  • Hu, Y.-J., Liu, Y., Zhang, L.-X., Zhao, R.-M., & Qu, S.-S. (2005). Studies of interaction between colchicine and bovine serum albumin by fluorescence quenching method. Journal of Molecular Structure, 750(1–3), 174–178. doi:10.1016/j.molstruc.2005.04.032
  • Hu, Y.-J., Ou-Yang, Y., Bai, A.-M., Zhao, R.-M., & Liu, Y. (2010). A series of novel rare earth molybdotungstosilicate heteropolyoxometalates binding to bovine serum albumin: Spectroscopic approach. Biological Trace Element Research, 136(1), 8–17. doi:10.1007/s12011-009-8521-8
  • Jahani, S., Khorasani-Motlagh, M., & Noroozifar, M. (2016). DNA interaction of europium (III) complex containing 2, 2′-bipyridine and its antimicrobial activity. Journal of Biomolecular Structure & Dynamics, 34(3), 612–624. doi:10.1080/07391102.2015.1048481
  • Jahani, S., Noroozifar, M., Khorasani-Motlagh, M., Torkzadeh-Mahani, M., & Adeli-Sardou, M. (2019). In vitro cytotoxicity studies of parent and nanoencapsulated Holmium-2, 9-dimethyl-1, 10-phenanthroline complex toward fish-salmon DNA-binding properties and antibacterial activity. Journal of Biomolecular Structure & Dynamics, 1–13. doi:10.1080/07391102.2018.1557077
  • Jalali, F., & Dorraji, P. S. (2017). Interaction of anthelmintic drug (thiabendazole) with DNA: Spectroscopic and molecular modeling studies. Arabian Journal of Chemistry, 10, S3947–S3954. doi:10.1016/j.arabjc.2014.06.001 doi:10.1016/j.arabjc.2014.06.001
  • Khan, N-U. H., Pandya, N., Prathap, K. J., Kureshy, R. I., Abdi, S. H. R., Mishra, S., & Bajaj, H. C. (2011). Chiral discrimination asserted by enantiomers of Ni (II), Cu (II) and Zn (II) Schiff base complexes in DNA binding, antioxidant and antibacterial activities. Spectrochimica Acta Part A: Molecular & Biomolecular Spectroscopy, 81(1), 199–208. doi:10.1016/j.saa.2011.06.002
  • Kostova, I., & Stefanova, T. (2010). Synthesis, characterization and cytotoxic/cytostatic activity of La (III) and Dy (III) complexes. Journal of Trace Elements in Medicine & Biology, 24(1), 7–13. doi:10.1016/j.jtemb.2009.06.004
  • Li, L., Guo, Q., Dong, J., Xu, T., & Li, J. (2013). DNA binding, DNA cleavage and BSA interaction of a mixed-ligand copper(II) complex with taurine Schiff base and 1,10-phenanthroline. Journal of Photochemistry & Photobiology: B, Biology, 125, 56–62. doi:10.1016/j.jphotobiol.2013.05.007
  • Moradi, Z., Khorasani-Motlagh, M., Rezvani, A. R., & Noroozifar, M. (2018). Evaluation of DNA, BSA binding, and antimicrobial activity of new synthesized neodymium complex containing 2,9-dimethyl 1,10-phenanthroline. Journal of Biomolecular Structure & Dynamics, 36(3), 779–794. doi:10.1080/07391102.2017.1288170
  • Moradinia, E., Mansournia, M., Aramesh‐Boroujeni, Z., & Bordbar, A. K. (2019). New transition metal complexes of 9, 10‐phenanthrenequinone p‐toluyl hydrazone Schiff base: Synthesis, spectroscopy, DNA and HSA interactions, antimicrobial, DFT and docking studies. Applied Organometallic Chemistry, 33(5), e4893. doi:10.1002/aoc.4893 doi:10.1002/aoc.4893
  • Morris, G. M., Goodsell, D. S., Halliday, R. S., Huey, R., Hart, W. E., Belew, R. K., & Olson, A. J. (1998). Automated docking using a Lamarckian genetic algorithm and an empirical binding free energy function. Journal of Computational Chemistry, 19(14), 1639–1662. doi:10.1002/(SICI)1096-987X(19981115)19:14<1639::AID-JCC10>3.0.CO;2-B
  • Mukherjee, A., Mondal, S., & Singh, B. (2017). Spectroscopic, electrochemical and molecular docking study of the binding interaction of a small molecule 5H-naptho [2, 1-f][1, 2] oxathieaphine 2, 2-dioxide with calf thymus DNA. International Journal of Biological Macromolecules, 101, 527–535. doi:10.1016/j.ijbiomac.2017.03.053
  • Nasir, Z., Shakir, M., Wahab, R., Shoeb, M., Alam, P., Khan, R. H. … Lutfullah, (2017). Co-precipitation synthesis and characterization of Co doped SnO2 NPs, HSA interaction via various spectroscopic techniques and their antimicrobial and photocatalytic activities. International Journal of Biological Macromolecules, 94, 554–565. doi:10.1016/j.ijbiomac.2016.10.057
  • Neese, F. (2012). The ORCA program system. Wiley Interdisciplinary Reviews: Computational Molecular Science, 2(1), 73–78. doi:10.1002/wcms.81
  • Oliveri, V., & Vecchio, G. (2011). A novel artificial superoxide dismutase: Non-covalent conjugation of albumin with a Mn III salophen type complex. European Journal of Medicinal Chemistry, 46(3), 961–965. doi:10.1016/j.ejmech.2010.12.023
  • Premkumar, T., & Govindarajan, S. (2006). Antimicrobial study on trivalent lighter rare-earth complexes of 2-pyrazinecarboxylate with hydrazinium cation. World Journal of Microbiology & Biotechnology, 22(10), 1105–1108. doi:10.1007/s11274-006-9149-x
  • Qais, F. A., Abdullah, K., Alam, M. M., Naseem, I., & Ahmad, I. (2017). Interaction of capsaicin with calf thymus DNA: A multi-spectroscopic and molecular modelling study. International Journal of Biological Macromolecules, 97, 392–402. doi:10.1016/j.ijbiomac.2017.01.022
  • Rahman, Y., Afrin, S., Husain, M. A., Sarwar, T., Ali, A., & Tabish, M. (2017). Unravelling the interaction of pirenzepine, a gastrointestinal disorder drug, with calf thymus DNA: An in vitro and molecular modelling study. Archives of Biochemistry & Biophysics, 625, 1–12. doi:10.1016/j.abb.2017.05.014[Mismatch]
  • Sarwar, T., Ishqi, H. M., Rehman, S. U., Husain, M. A., Rahman, Y., & Tabish, M. (2017). Caffeic acid binds to the minor groove of calf thymus DNA: A multi-spectroscopic, thermodynamics and molecular modelling study. International Journal of Biological Macromolecules, 98, 319–328. doi:10.1016/j.ijbiomac.2017.02.014 doi:10.1016/j.ijbiomac.2017.02.014
  • Sarwar, T., Rehman, S. U., Husain, M. A., Ishqi, H. M., & Tabish, M. (2015). Interaction of coumarin with calf thymus DNA: Deciphering the mode of binding by in vitro studies. International Journal of Biological Macromolecules, 73, 9–16. doi:10.1016/j.ijbiomac.2014.10.017
  • Shahabadi, N., Falsafi, M., & Maghsudi, M. (2017). DNA-binding study of anticancer drug cytarabine by spectroscopic and molecular docking techniques. Nucleosides, Nucleotides & Nucleic Acids, 36(1), 49–65. doi:10.1080/15257770.2016.1218021
  • Shahabadi, N., Hakimi, M., Morovati, T., Falsafi, M., & Fili, S. M. (2017). Experimental and molecular modeling studies on the DNA-binding of diazacyclam-based acrocyclic copper complex. Journal of Photochemistry & Photobiology B: Biology, 167, 7–14. doi:10.1016/j.jphotobiol.2016.12.023
  • Shahabadi, N., & Heidari, L. (2014). Synthesis, characterization and multi-spectroscopic DNA interaction studies of a new platinum complex containing the drug metformin. Spectrochimica Acta Part A: Molecular & Biomolecular Spectroscopy, 128, 377–385. doi:10.1016/j.saa.2014.02.167
  • Shahabadi, N., Maghsudi, M., Kiani, Z., & Pourfoulad, M. (2011). Multispectroscopic studies on the interaction of 2-tert-butylhydroquinone (TBHQ), a food additive, with bovine serum albumin. Food Chemistry, 124(3), 1063–1068. doi:10.1016/j.foodchem.2010.07.079
  • Shahsavani, M. B., Ahmadi, S., Aseman, M. D., Nabavizadeh, S. M., Alavianmehr, M. M., & Yousefi, R. (2016). Comparative study on the interaction of two binuclear Pt (II) complexes with human serum albumin: Spectroscopic and docking simulation assessments. Journal of Photochemistry & Photobiology B: Biology, 164, 323–334. doi:10.1016/j.jphotobiol.2016.09.035
  • Singh, N., Pagariya, D., Jain, S., Naik, S., & Kishore, N. (2018). Interaction of copper (II) complexes by bovine serum albumin: Spectroscopic and calorimetric insights. Journal of Biomolecular Structure & Dynamics, 36(9), 2449–2462. doi:10.1080/07391102.2017.1355848
  • Suganthi, M., & Elango, K. P. (2019). Spectroscopic and molecular docking studies on the albumin-binding properties of metal (II) complexes of Mannich base derived from lawsone. Journal of Biomolecular Structure & Dynamics, 37(5), 1136–1145. doi:10.1080/07391102.2018.1450788
  • Thompson, K. H., & Orvig, C. (2006). Editorial: Lanthanide compounds for therapeutic and diagnostic applications. Chemical Society Reviews, 35(6), 499. doi:10.1039/b606622b
  • Wang, Y.-Q., Zhang, H.-M., Zhang, G.-C., Tao, W.-H., & Tang, S.-H. (2007). Interaction of the flavonoid hesperidin with bovine serum albumin: A fluorescence quenching study. Journal of Luminescence, 126(1), 211–218. doi:10.1016/j.jlumin.2006.06.013
  • Wu, S.-S., Yuan, W.-B., Wang, H.-Y., Zhang, Q., Liu, M., & Yu, K.-B. (2008). Synthesis, crystal structure and interaction with DNA and HSA of (N,N′-dibenzylethane-1, 2-diamine) transition metal complexes. Journal of Inorganic Biochemistry, 102(11), 2026–2034. doi:10.1016/j.jinorgbio.2008.08.005
  • Xiao, J. B., Chen, J. W., Cao, H., Ren, F. L., Yang, C. S., Chen, Y., & Xu, M. (2007). Study of the interaction between baicalin and bovine serum albumin by multi-spectroscopic method. Journal of Photochemistry & Photobiology A: Chemistry, 191(2–3), 222–227. doi:10.1016/j.jphotochem.2007.04.027
  • Yadav, S., Yousuf, I., Usman, M., Ahmad, M., Arjmand, F., & Tabassum, S. (2015). Synthesis and spectroscopic characterization of diorganotin (iv) complexes of N′-(4-hydroxypent-3-en-2-ylidene) isonicotinohydrazide: Chemotherapeutic potential validation by in vitro interaction studies with DNA/HSA, DFT, molecular docking and cytotoxic activity. RSC Advances, 5(63), 50673–50690. doi:10.1039/C5RA06953J
  • Yousuf, I., Bashir, M., Arjmand, F., & Tabassum, S. (2018). Multispectroscopic insight, morphological analysis and molecular docking studies of CuII-based chemotherapeutic drug entity with human serum albumin (HSA) and bovine serum albumin (BSA). Journal of Biomolecular Structure & Dynamics, 1–15. doi:10.1080/07391102.2018.1512899
  • Yu, H.-J., Huang, S.-M., Li, L.-Y., Jia, H.-N., Chao, H., Mao, Z.-W., … Ji, L.-N. (2009). Synthesis, DNA-binding and photocleavage studies of ruthenium complexes [Ru(bpy)2(mitatp)]2+ and [Ru(bpy)2(nitatp)]2+. Journal of Inorganic Biochemistry, 103(6), 881–890. doi:10.1016/j.jinorgbio.2009.03.005
  • Yu, Y., Huang, Y., Zhang, L., Lin, Z., & Wang, G. (2013). Growth and spectral assessment of Yb3+-doped KBaGd (MoO4)3 crystal: A candidate for ultrashort pulse and tunable lasers. PloS one, 8(1), e54450. doi:10.1371/journal.pone.0054450
  • Yue, Y., Zhang, Y., Qin, J., & Chen, X. (2008). Study of the interaction between esculetin and human serum albumin by multi-spectroscopic method and molecular modeling. Journal of Molecular Structure, 888(1–3), 25–32. doi:10.1016/j.molstruc.2007.11.028
  • Zhao, C., Sun, Y., Ren, J., & Qu, X. (2016). Recent progress in lanthanide complexes for DNA sensing and targeting specific DNA structures. Inorganica Chimica Acta, 452, 50–61. doi:10.1016/j.ica.2016.04.014

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.