131
Views
8
CrossRef citations to date
0
Altmetric
Research Articles

Theoretical investigation insights into the temperature triggered tegafur anticancer drug release from the surface of graphene oxide nanosheet

&
Pages 2287-2295 | Received 11 Apr 2019, Accepted 01 Jun 2019, Published online: 19 Jun 2019

References

  • Abraham, M. J., Murtola, T., Schulz, R., Páll, S., Smith, J. C., Hess, B., & Lindah, E. (2015). Gromacs: High performance molecular simulations through multi-level parallelism from laptops to supercomputers. Software X, 1–2, 19–25. doi:10.1016/j.softx.2015.06.001
  • Arias, J. L., López-Viota, M., Gallardo, V., & Ruiz, M. A. (2010). Chitosan nanoparticles as a new delivery system for the chemotherapy agent tegafur. Drug Development and Industrial Pharmacy, 36(6), 744–750. doi:10.3109/03639040903517914
  • Berendsen, H. J., Postma, J. V., van Gunsteren, W. F., DiNola, A. R., & Haak, J. R. (1984). Molecular dynamics with coupling to an external bath. The Journal of Chemical Physics, 81(8), 3684–3690. doi:10.1063/1.448118
  • Biegler-König, F., Schönbohm, J., & Bayles, D. (2001). AIM2000 – A program to analyze and visualize atoms in molecules. Journal of Computational Chemistry, 22, 545–559. doi:10.1002/1096-987X(20010415)22:5 < 545::AID-JCC1027 > 3.0.CO;2-Y
  • Boukhvalov, D. W. (2013). DFT modeling of the covalent functionalization of graphene: From ideal to realistic models. RSC Advances, 3(20), 7150–7159. doi:10.1039/c3ra23372c
  • Boukhvalov, D. W., & Katsnelson, M. I. (2008). Modeling of graphite oxide. Journal of the American Chemical Society, 130(32), 10697–10701. doi:10.1021/ja8021686
  • Boys, F. S., & Bernardi, F. (1970). The calculation of small molecular interactions by the differences of separate total energies. Some procedures with reduced errors. Molecular Physics, 19(4), 553–566. doi:10.1080/00268977000101561
  • Brooks, B. R., Brooks, C. L., MacKerell, A. D., Nilsson, L., Petrella, R. J., Roux, B., & Caflisch, A. (2009). CHARMM: the biomolecular simulation program. Journal of Computational Chemistry, 30, 1545–1614. doi:10.1002/jcc.21287
  • Bussi, G., Donadio, D., & Parrinello, M. (2007). Canonical sampling through velocity-rescaling. The Journal of Chemical Physics, 126(1), 014101. doi:10.1063/1.2408420
  • Cammas, S., Suzuki, K., Sone, C., Sakurai, Y., Kataoka, K., & Okano, T. (1997). Thermo-responsive polymer nanoparticles with a core-shell micelle structure as site-specific drug carriers. Journal of Controlled Release, 48(2-3), 157–164. doi:10.1016/S0168-3659(97)00040-0
  • Chai, J. -D., & Head-Gordon, M. (2008a). Systematic optimization of long-range corrected hybrid density functionals. The Journal of Chemical Physics, 128(8), 084106. doi:10.1063/1.2834918
  • Chai, J.-D., & Head-Gordon, M. (2008b). Long-range corrected hybrid density functionals with damped atom–atom dispersion corrections. Physical Chemistry Chemical Physics, 10(44), 6615–6620. doi:10.1039/b810189b
  • Chong, Y., Ge, C., Yang, Z., Garate, J., Gu, Z., Weber, J. K., … Zhou, R. (2015). Reduced cytotoxicity of graphene nanosheets mediated by blood-protein coating. ACS Nano, 9(6), 5713–5724. doi:10.1021/nn5066606
  • Chung, J. E., Yokoyama, M., & Okano, T. (2000). Inner core segment design for drug delivery control of thermo-responsive polymeric micelles. Journal of Controlled Release, 65(1–2), 93–103. doi:10.1016/S0168-3659(99)00242-4
  • Cohen, A. J., Sánchez, P. M., & Yang, W. (2008). Insights into current limitations of density functional theory. Science, 321(5890), 792–794. doi:10.1126/science.1158722
  • Dreher, M. R., Raucher, D., Balu, N., Michael, C. O., Ludeman, S. M., & Chilkoti, A. (2003). Evaluation of an elastin-like polypeptide–doxorubicin conjugate for cancer therapy. Journal of Controlled Release, 91(1–2), 31–43. doi:10.1016/S0168-3659(03)00216-5
  • Frisch, M. J., Trucks, G. W., Schlegel, H. B., Scuseria, G. E., Robb, M. A., Cheeseman, J. R., & Pople, J. A. (2003). Gaussian 03, Revision C.02 (or D.01). Pittsburgh, PA: Gaussian Inc.
  • Glendening, E. D., Reed, A. E., Carpenter, J. E., & Weinhold, F. (1992). NBO (Version 3.1). Pittsburgh: Gaussian Inc.
  • Glendening, E. D., Reed, A. E., Carpenter, J. E., & Weienhold, F. (1996). NBO Version 3.1, Theoretical Chemistry Institute. Madison: University of Wisconsin:
  • Gonçalves, G., Vila, M., Portolés, M. T., Vallet‐Regi, M., Gracio, J., & Marques, P. A. A. (2013). Nano‐graphene oxide: a potential multifunctional platform for cancer therapy. Advanced Healthcare Materials, 2(8), 1072–1090. doi:10.1002/adhm.201300023
  • Hashemzadeh, H., & Raissi, H. (2018). Covalent organic framework as smart and high efficient carrier for anticancer drug delivery: A DFT calculations and molecular dynamics simulation study. Journal of Physics D, 51, 345401. doi:10.1088/1361-6463/aad3e8
  • Hildebrandt, B., Wust, P., Ahlers, O., Dieing, A., Sreenivasa, G., & Kerner, T. (2002). The cellular and molecular basis of hyperthermia. Critical Reviews in Oncology/Hematology, 43(1), 33–56. doi:10.1016/S1040-8428(01)00179-2
  • Jorgensen, W. L., Chandrasekhar, J., Madura, J. D., Impey, R. W., & Klein, M. L. (1983). Comparison of simple potential functions for simulating liquid water. The Journal of Chemical Physics, 79(2), 926. doi:10.1063/1.445869
  • Kamel, M., Raissi, H., Morsali, A., & Shahabi, M. (2018). Assessment of the adsorption mechanism of Flutamide anticancer drug on the functionalized single-walled carbon nanotube surface as a drug delivery vehicle: An alternative theoretical approach based on DFT and MD. Applied Surface Science, 434, 492–503. doi:10.1016/j.apsusc.2017.10.165
  • Khorram, R., Raissi, H., & Shahabi, M. (2018). Analysis of the structures, energetics and vibrational frequencies for the hydrogen bonded interaction of nucleic acid bases with Carmustine pharmaceutical agent: a detailed computational approach. Structural Chemistry, 29(4), 1165–1174. doi:10.1007/s11224-018-1102-8
  • Khorram, R., Raissi, H., Morsali, A., & Shahabi, M. (2018). The computational study of the γ-Fe2O3 nanoparticle as Carmustine drug delivery system: DFT approach. Journal of Biomolecular Structure & Dynamics, 37, 454–464. doi:10.1080/07391102.2018.1429312?journalCode = tbsd20
  • Koch, U., & Popelier, P. L. A. (1995). Characterization of C–H–O hydrogen bonds on the basis of the charge density. The Journal of Physical Chemistry, 99(24), 9747–9754. doi:10.1021/j100024a016
  • Kostarelos, K. (2003). Rational design and engineering of delivery systems for therapeutics: biomedical exercises in colloid and surface science. Advances in Colloid and Interface Science, 106(1-3), 147–168. doi:10.1016/S0001-8686(03)00109-X
  • Lee, E. S., Na, K., & Bae, Y. H. (2003). Polymeric micelle for tumor pH and folate-mediated targeting. Journal of Controlled Release, 91(1–2), 103–113. doi:10.1016/S0168-3659(03)00239-6
  • Lerf, A., He, H., Forster, M., & Klinowski, J. (1998). Structure of graphite oxide revisited. The Journal of Physical Chemistry B, 102(23), 4477–4482. doi:10.1021/jp9731821
  • Liu, S. Q., Wiradharma, N., Gao, S. J., Tong, Y. W., & Yang, Y. Y. (2007). Bio-functional micelles self-assembled from a folate-conjugated block copolymer for targeted intracellular delivery of anticancer drugs. Biomaterials, 28(7), 1423–1433. doi:10.1016/j.biomaterials.2006.11.013
  • Mahdavi, M., Rahmani, F., & Nouranian, S. (2016). Molecular simulation of pH-dependent diffusion, loading, and release of doxorubicin in graphene and graphene oxide drug delivery systems. Journal of Materials Chemistry B, 4(46), 7441–7451. doi:10.1039/C6TB00746E
  • Mennucci, B. (2012). Polarizable continuum model. Wiley Interdisciplinary Reviews: Computational Molecular Science, 2(3), 386–404. doi:10.1002/wcms.1086
  • Miertus, S., Scrocco, E., & Tomasi, J. (1981). Electrostatic interaction of a solute with a continuum. A direct utilization of ab initio molecular potentials for the prevision of solvent effects. Chemical Physics, 55, 117–129. doi:10.1016/0301-0104(81)85090-2
  • Po, H. N., & Senozan, N. M. (2001). The Henderson-Hasselbalch equation: Its history and limitations. Journal of Chemical Education, 78(11), 1499–1503. doi:10.1021/ed078p1499
  • Shahabi, M., & Raissi, H. (2016a). Investigation of the molecular structure, electronic properties, AIM, NBO, NMR and NQR parameters for the interaction of Sc, Ga and Mg-doped (6,0) aluminum nitride nanotubes with COCl2 gas by DFT study. Journal of Inclusion Phenomena and Macrocyclic Chemistry, 84(1–2), 99–114. doi:10.1007/s10847-015-0587-7
  • Shahabi, M., & Raissi, H. (2016b). Molecular dynamics simulation and quantum chemical studies on the investigation of aluminum nitride nanotube as phosgene gas sensor. Journal of Inclusion Phenomena and Macrocyclic Chemistry, 86(3–4), 305–322. doi:10.1007/s10847-016-0664-6
  • Shahabi, M., & Raissi, H. (2017a). Investigation of the solvent effect, molecular structure, electronic properties and adsorption mechanism of tegafur anticancer drug on graphene nanosheet surface as drug delivery system by molecular dynamics simulation and density functional approach. Journal of Inclusion Phenomena and Macrocyclic Chemistry, 88(3–4), 159–169. doi:10.1007/s10847-017-0713-9
  • Shahabi, M., & Raissi, H. (2017b). Assessment of DFT calculations and molecular dynamics simulation on the application of zinc oxide nanotube as hydrogen cyanide gas sensor. Journal of Inorganic and Organometallic Polymers and Materials, 27(6), 1878–1885. doi:10.1007/s10904-017-0656-z
  • Shahabi, M., & Raissi, H. (2018a). Screening of the structural, topological, and electronic properties of the functionalized graphene nanosheets as potential tegafur anticancer drug carriers using DFT method. Journal of Biomolecular Structure and Dynamics, 36(10), 2517–2529. doi:10.1080/07391102.2017.1360209
  • Shahabi, M., & Raissi, H. (2018b). Assessment of solvent effects on the inclusion behavior of pyrazinamide drug into cyclic peptide based nanotubes as novel drug delivery vehicles. Journal of Molecular Liquids, 268, 326–334. doi:10.1016/j.molliq.2018.07.064
  • Shahabi, M., Raissi, H., & Mollania, F. (2015). Electronic structures, intramolecular hydrogen bond interaction, and aromaticity of substituted 4-amino-3-penten-2-one in ground and electronic excited state. Structural Chemistry, 26(2), 491–506. doi:10.1007/s11224-014-0505-4
  • Shih, C. J., Lin, S., Sharma, R., Strano, M. S., & Blankschtein, D. (2012). Understanding the pH dependent behavior of graphene oxide aqueous solutions: A comparative experimental and molecular dynamics simulation study. Langmuir, 28(1), 235–241. doi:10.1021/la203607w
  • Tu, Y., Lv, M., Xiu, P., Huynh, T., Zhang, M., Castelli, M., … Zhou, R. (2013). Destructive extraction of phospholipids from Escherichia coli membranes by graphene nanosheets. Nature Nanotechnology, 8(8), 594–601. doi: 10.1038/nnano.2013.275.
  • van der Spoel, D., Lindahl, E., Hess, B., Buuren A. R, V., Apol, E., Meulenhoff, P. J., Tielemann, D. P., … Berendsen, H. J. C. (2004). www.gromacs.org.
  • van der Zee, J. (2002). Heating the patient: a promising approach? Annals of Oncology, 13, 1173–1184. doi:10.1093/annonc/mdf280
  • Vanesa, S. C., Jachak, A., Hurt, R. H., & Kane, B. A. (2012). Biological interactions of graphene-family nanomaterials: An interdisciplinary review. Chemical Research in Toxicology, 25(1), 15–34. doi:10.1021/tx200339h
  • Veronese, F. M., Schiavon, O., Pasut, G., Mendichi, R., Andersson, L., Tsirk, A., … Duncan, R. (2005). PEG − doxorubicin conjugates: Influence of polymer structure on drug release, in vitro cytotoxicity, biodistribution, and antitumor activity. Bioconjugate Chemistry, 16(4), 775–784. doi:10.1021/bc040241m
  • Wang, Y., Li, Z., Wang, J., Li, J., & Lin, Y. (2011). Graphene and graphene oxide: biofunctionalization and applications in biotechnology. Trends-in-biotechnology, 29(5), 205–212. doi:10.1016/j.tibtech.2011.01.008
  • Wendt, M., & Weinhold, F. (2001). NBOView 1.0. Theoretical Chemistry Institute. Madison: University of Wisconsin:
  • Yang, S., Chen, C., Chen, Y., Li, J., Wang, D., Wang, X., & Hu, W. (2015). Competitive adsorption of PbII, NiII, and SrII ions on graphene oxides: a combined experimental and theoretical study. ChemPlusChem, 80, 480–484. doi:10.1002/cplu.201402284
  • Zoete, V., Cuendet, M. A., Grosdidier, A., & Michielin, O. (2011). Swiss Param: A fast force field generation tool for small organic molecules. Journal of Computational Chemistry, 32(11), 2359–2368. doi:10.1002/jcc.21816

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.