329
Views
4
CrossRef citations to date
0
Altmetric
Research Articles

Analyzing aggregation propensities of clinically relevant PTEN mutants: a new culprit in pathogenesis of cancer and other PTENopathies

, , , ORCID Icon &
Pages 2253-2266 | Received 11 Apr 2019, Accepted 30 May 2019, Published online: 22 Jun 2019

References

  • Ano Bom, A. P. D., Rangel, L. P., Costa, D. C. F., de Oliveira, G. A. P., Sanches, D., Braga, C. A., … Silva, J. L. (2012). Mutant p53 aggregates into prion-like amyloid oligomers and fibrils: implications for cancer. Journal of Biological Chemistry, 287(33), 28152–28162. doi: 10.1074/jbc.M112.340638
  • Backman, S. A., Stambolic, V., Suzuki, A., Haight, J., Elia, A., Pretorius, J., … Mak, T. W. (2001). Deletion of Pten in mouse brain causes seizures, ataxia and defects in soma size resembling Lhermitte-Duclos disease. Nature Genetics, 29(4), 396–403. doi: 10.1038/ng782
  • Banerjee-Basu, S., & Packer, A. (2010). SFARI Gene: An evolving database for the autism research community. Disease Models & Mechanisms, 3(3–4), 133–135. doi: 10.1242/dmm.005439
  • Benilova, I., Karran, E., & De Strooper, B. (2012). The toxic Aβ oligomer and Alzheimer's disease: An emperor in need of clothes. Nature Neuroscience, 15(3), 349. doi: 10.1038/nn.3028https://www.nature.com/articles/nn.3028#supplementary-information
  • Berger, A. H., Knudson, A. G., & Pandolfi, P. P. (2011). A continuum model for tumour suppression. Nature, 476(7359), 163–169. doi: 10.1038/nature10275
  • Boeynaems, S., Alberti, S., Fawzi, N. L., Mittag, T., Polymenidou, M., Rousseau, F., … Fuxreiter, M. (2018). Protein phase separation: A new phase in cell biology. Trends in Cell Biology, 28(6), 420–435. doi: 10.1016/j.tcb.2018.02.004
  • Bolduc, D., Rahdar, M., Tu-Sekine, B., Sivakumaren, S. C., Raben, D., Amzel, L. M., … Cole, P. (2013). Phosphorylation-mediated PTEN conformational closure and deactivation revealed with protein semisynthesis. Elife, 2, e00691. doi: 10.7554/eLife.00691
  • Cabra, V., Vazquez-Contreras, E., Moreno, A., & Arreguin-Espinosa, R. (2008). The effect of sulfhydryl groups and disulphide linkage in the thermal aggregation of Z19 alpha-zein. Biochimica et Biophysica Acta, 1784(7–8), 1028–1036. doi: 10.1016/j.bbapap.2008.04.002
  • Cantley, L. C., & Neel, B. G. (1999). New insights into tumor suppression: PTEN suppresses tumor formation by restraining the phosphoinositide 3-kinase/AKT pathway. Proceedings of the National Academy of Sciences of the United States of America, 96(8), 4240–4245. doi: 10.1073/pnas.96.8.4240
  • Cerami, E., Gao, J., Dogrusoz, U., Gross, B. E., Sumer, S. O., Aksoy, B. A., … Schultz, N. (2012). The cBio cancer genomics portal: An open platform for exploring multidimensional cancer genomics data. Cancer Discovery, 2(5), 401–404. doi: 10.1158/2159-8290.CD-12-0095
  • Chen, Z. H., Zhu, M., Yang, J., Liang, H., He, J., He, S., … Shen, W. H. (2014). PTEN interacts with histone H1 and controls chromatin condensation. Cell Reports, 8(6), 2003–2014. doi: 10.1016/j.celrep.2014.08.008
  • Chi, E. Y., Krishnan, S., Randolph, T. W., & Carpenter, J. F. (2003). Physical stability of proteins in aqueous solution: Mechanism and driving forces in nonnative protein aggregation. Pharmaceutical Research, 20(9), 1325–1336.
  • Chiti, F., & Dobson, C. M. (2006). Protein misfolding, functional amyloid, and human disease. Annual Review of Biochemistry, 75(1), 333–366. doi: 10.1146/annurev.biochem.75.101304.123901
  • Chiti, F., Webster, P., Taddei, N., Clark, A., Stefani, M., Ramponi, G., & Dobson, C. M. (1999). Designing conditions for in vitro formation of amyloid protofilaments and fibrils. Proceedings of the National Academy of Sciences of the United States of America, 96(7), 3590–3594. doi: 10.1073/pnas.96.7.3590
  • Conchillo-Solé, O., de Groot, N. S., Avilés, F. X., Vendrell, J., Daura, X., & Ventura, S. (2007). AGGRESCAN: A server for the prediction and evaluation of "hot spots" of aggregation in polypeptides. BMC Bioinformatics, 8(1), 65. doi: 10.1186/1471-2105-8-65
  • Conicella, A. E., Zerze, G. H., Mittal, J., & Fawzi, N. L. (2016). ALS mutations disrupt phase separation mediated by alpha-helical structure in the TDP-43 low-complexity C-terminal domain. Structure, 24(9), 1537–1549. doi: 10.1016/j.str.2016.07.007
  • Cupolillo, D., Hoxha, E., & Faralli, A. (2016). Autistic-like traits and cerebellar dysfunction in Purkinje cell PTEN knock-out mice. Neuropharmacology, 41(6), 1457–1466. doi: 10.1038/npp.2015.339
  • Darling, A. L., Liu, Y., Oldfield, C. J., & Uversky, V. N. (2018). Intrinsically disordered proteome of human membrane-less organelles. Proteomics, 18(5–6), e1700193. doi: 10.1002/pmic.201700193
  • De Baets, G., Van Doorn, L., Rousseau, F., & Schymkowitz, J. (2015). Increased aggregation is more frequently associated to human disease-associated mutations than to neutral polymorphisms. PLoS Computational Biology, 11(9), e1004374. doi: 10.1371/journal.pcbi.1004374
  • de Oliveira, G. A., Rangel, L. P., Costa, D. C., & Silva, J. L. (2015). Misfolding, aggregation, and disordered segments in c-Abl and p53 in human cancer. Frontiers in Oncology, 5, 97. doi: 10.3389/fonc.2015.00097
  • Dobson, C. M. (2003). Protein folding and misfolding. Nature, 426(6968), 884–890. doi: 10.1038/nature02261
  • Dobson, C. M. (2004). Principles of protein folding, misfolding and aggregation. Seminars in Cell and Development Biology, 15(1), 3–16. doi: 10.1016/j.semcdb.2003.12.008
  • Eng, C. (2003). PTEN: one gene, many syndromes. Human Mutation, 22(3), 183–198. doi: 10.1002/humu.10257
  • Fandrich, M., & Dobson, C. M. (2002). The behaviour of polyamino acids reveals an inverse side chain effect in amyloid structure formation. The EMBO Journal, 21(21), 5682–5690. doi: 10.1093/emboj/cdf573
  • Fernandez-Escamilla, A. M., Rousseau, F., Schymkowitz, J., & Serrano, L. (2004). Prediction of sequence-dependent and mutational effects on the aggregation of peptides and proteins. Nature Biotechnology, 22(10), 1302–1306. doi: 10.1038/nbt1012
  • Forbes, S., Bhamra, G., Bamford, S., Dawson, E., Kok, C., Clements, J., …., Stratton, M. (2008). The catalogue of somatic mutations in cancer (COSMIC). Current Protocols in Human Genetics, 10, 11.
  • Galea, C., Bowman, P., & Kriwacki, R. W. (2005). Disruption of an intermonomer salt bridge in the p53 tetramerization domain results in an increased propensity to form amyloid fibrils. Protein Science, 14(12), 2993–3003. doi: 10.1110/ps.051622005
  • Gao, J., Aksoy, B. A., Dogrusoz, U., Dresdner, G., Gross, B., Sumer, S. O., … Schultz, N. (2013). Integrative analysis of complex cancer genomics and clinical profiles using the cBioPortal. Science Signaling, 6(269), pl1. doi: 10.1126/scisignal.2004088
  • Garbuzynskiy, S. O., Lobanov, M. Y., & Galzitskaya, O. V. (2010). FoldAmyloid: A method of prediction of amyloidogenic regions from protein sequence. Bioinformatics, 26(3), 326–332. doi: 10.1093/bioinformatics/btp691
  • Guerreiro, R., Celeste, S., Jesse, G., Connor, E., Dena, H., Kristelle, B., …Jose, B. (2018). A comprehensive assessment of benign genetic variability for neurodegenerative disorders. BioRxiv. doi: 10.1101/270686
  • Guo, A., Salomoni, P., Luo, J., Shih, A., Zhong, S., Gu, W., & Pandolfi, P. P. (2000). The function of PML in p53-dependent apoptosis. Nature Cell Biology, 2(10), 730–736. doi: 10.1038/35036365
  • Haimov, B., & Srebnik, S. (2018). The relation between alpha-helical conformation and amyloidogenicity. Biophysical Journal, 114(8), 1869–1877. doi: 10.1016/j.bpj.2018.03.019
  • Hainaut, P., & Hollstein, M. (2000). p53 and human cancer: The first ten thousand mutations. Advances in Cancer Research, 77, 81–137.
  • Heinrich, F., Chakravarthy, S., Nanda, H., Papa, A., Pandolfi, P. P., Ross, A. H., … Lösche, M. (2015). The PTEN tumor suppressor forms homodimers in solution. Structure, 23(10), 1952–1957. doi: 10.1016/j.str.2015.07.012
  • Higashimoto, Y., Asanomi, Y., Takakusagi, S., Lewis, M. S., Uosaki, K., Durell, S. R., … Sakaguchi, K. (2006). Unfolding, aggregation, and amyloid formation by the tetramerization domain from mutant p53 associated with lung cancer. Biochemistry, 45(6), 1608–1619. doi: 10.1021/bi051192j
  • Hopkins, B. D., Fine, B., Steinbach, N., Dendy, M., Rapp, Z., Shaw, J., … Parsons, R. (2013). A secreted PTEN phosphatase that enters cells to alter signaling and survival. Science, 341(6144), 399–402. doi: 10.1126/science.1234907
  • Hopkins, B. D., Hodakoski, C., Barrows, D., Mense, S. M., & Parsons, R. E. (2014). PTEN function: the long and the short of it. Trends in Biochemical Sciences, 39(4), 183–190. doi: 10.1016/j.tibs.2014.02.006
  • Igarashi, A., Itoh, K., Yamada, T., Adachi, Y., Kato, T., Murata, D., … Iijima, M. (2018). Nuclear PTEN deficiency causes microcephaly with decreased neuronal soma size and increased seizure susceptibility. Journal of Biological Chemistry, 293(24), 9292–9300. doi: 10.1074/jbc.RA118.002356
  • Ishimaru, D., Andrade, L. R., Teixeira, L. S. P., Quesado, P. A., Maiolino, L. M., Lopez, P. M., … Silva, J. L. (2003). Fibrillar aggregates of the tumor suppressor p53 core domain. Biochemistry, 42(30), 9022–9027. doi: 10.1021/bi034218k
  • Kirilyuk, A., Shimoji, M., Catania, J., Sahu, G., Pattabiraman, N., Giordano, A., … Avantaggiati, M. L. (2012). An intrinsically disordered region of the acetyltransferase p300 with similarity to prion-like domains plays a role in aggregation. PLoS One, 7(11), e48243. doi: 10.1371/journal.pone.0048243
  • Kluth, M., Harasimowicz, S., Burkhardt, L., Grupp, K., Krohn, A., Prien, K., … Schlomm, T. (2014). Clinical significance of different types of p53 gene alteration in surgically treated prostate cancer. International Journal of Cancer, 135(6), 1369–1380. doi: 10.1002/ijc.28784
  • Kwon, C.-H., Luikart, B. W., Powell, C. M., Zhou, J., Matheny, S. A., Zhang, W., … Parada, L. F. (2006). Pten regulates neuronal arborization and social interaction in mice. Neuron, 50(3), 377–388. doi: 10.1016/j.neuron.2006.03.023
  • Kwon, C.-H., Zhu, X., Zhang, J., Knoop, L. L., Tharp, R., Smeyne, R. J., … Baker, S. J. (2001). Pten regulates neuronal soma size: a mouse model of Lhermitte-Duclos disease. Nature Genetics, 29(4), 404–411. doi: 10.1038/ng781
  • Kyte, J., & Doolittle, R. F. (1982). A simple method for displaying the hydropathic character of a protein. Journal of Molecular Biology, 157(1), 105–132.
  • Lane, D. P. (1992). Cancer. p53, guardian of the genome. Nature, 358(6381), 15–16. doi: 10.1038/358015a0
  • Lasagna-Reeves, C. A., Clos, A. L., Castillo-Carranza, D., Sengupta, U., Guerrero-Muñoz, M., Kelly, B., … Kayed, R. (2013). Dual role of p53 amyloid formation in cancer; loss of function and gain of toxicity. Biochemical and Biophysical Research Communications, 430(3), 963–968. doi: 10.1016/j.bbrc.2012.11.130
  • Lee, A. S., Galea, C., DiGiammarino, E. L., Jun, B., Murti, G., Ribeiro, R. C., … Kriwacki, R. W. (2003). Reversible amyloid formation by the p53 tetramerization domain and a cancer-associated mutant. Journal of Molecular Biology, 327(3), 699–709. doi: 10.1016/S0022-2836(03)00175-X
  • Lee, J.-O., Yang, H., Georgescu, M.-M., Di Cristofano, A., Maehama, T., Shi, Y., … Pavletich, N. P. (1999). Crystal structure of the PTEN tumor suppressor: implications for its phosphoinositide phosphatase activity and membrane association. Cell, 99(3), 323–334. doi: 10.1016/S0092-8674(00)81663-3
  • Lee, Y. R., Chen, M., & Pandolfi, P. P. (2018). The functions and regulation of the PTEN tumour suppressor: new modes and prospects. Nature Reviews Molecular Cell Biology, 19(9), 547–562. doi: 10.1038/s41580-018-0015-0
  • Levy, C. B., Stumbo, A. C., Ano Bom, A. P. D., Portari, E. A., Carneiro, Y., Silva, J. L., & De Moura-Gallo, C. V. (2011). Co-localization of mutant p53 and amyloid-like protein aggregates in breast tumors. The International Journal of Biochemistry & Cell Biology, 43(1), 60–64. doi: 10.1016/j.biocel.2010.10.017
  • Li, P., Wang, D., Li, H., Yu, Z., Chen, X., & Fang, J. (2014). Identification of nucleolus-localized PTEN and its function in regulating ribosome biogenesis. Molecular Biology Reports, 41(10), 6383–6390. doi: 10.1007/s11033-014-3518-6
  • Linding, R., Schymkowitz, J., Rousseau, F., Diella, F., & Serrano, L. (2004). A comparative study of the relationship between protein structure and beta-aggregation in globular and intrinsically disordered proteins. Journal of Molecular Biology, 342(1), 345–353. doi: 10.1016/j.jmb.2004.06.088
  • Liu, F., Li, B., Tung, E. J., Grundke-Iqbal, I., Iqbal, K., & Gong, C. X. (2007). Site-specific effects of tau phosphorylation on its microtubule assembly activity and self-aggregation. European Journal of Neuroscience, 26(12), 3429–3436. doi: 10.1111/j.1460-9568.2007.05955.x
  • Maehama, T., & Dixon, J. E. (1998). The tumor suppressor, PTEN/MMAC1, dephosphorylates the lipid second messenger, phosphatidylinositol 3,4,5-trisphosphate. Journal of Biological Chemistry, 273(22), 13375–13378. doi: 10.1074/jbc.273.22.13375
  • Malaney, P., Pathak, R. R., Xue, B., Uversky, V. N., & Dave, V. (2013). Intrinsic disorder in PTEN and its interactome confers structural plasticity and functional versatility. Science Reports, 3, 2035. doi: 10.1038/srep02035
  • Malaney, P., Uversky, V. N., & Dave, V. (2013). The PTEN long N-tail is intrinsically disordered: increased viability for PTEN therapy. Molecular Biosystems, 9(11), 2877–2888. doi: 10.1039/c3mb70267g
  • Malaney, P., Uversky, V. N., & Dave, V. (2017). PTEN proteoforms in biology and disease. Cellular and Molecular Life Sciences, 74(15), 2783–2794. doi: 10.1007/s00018-017-2500-6
  • Mascarenhas, N. M., & Gosavi, S. (2017). Understanding protein domain-swapping using structure-based models of protein folding. Progress in Biophysics and Molecular Biology, 128, 113–120. doi: 10.1016/j.pbiomolbio.2016.09.013
  • Mathieu, E., Talvas, A., & Delamarche, C. (2013). MetAmyl: a METa-predictor for AMYLoid proteins. PLoS One, 8(11), e79722. doi: 10.1371/journal.pone.0079722
  • Meng, F., Na, I., Kurgan, L., & Uversky, V. N. (2016). Compartmentalization and functionality of nuclear disorder: intrinsic disorder and protein-protein interactions in intra-nuclear compartments. International Journal of Molecular Science, 17(1), 17010024. doi: 10.3390/ijms17010024
  • Mitrea, D. M., & Kriwacki, R. W. (2016). Phase separation in biology; functional organization of a higher order. Cell Communication and Signaling, 14, 1. doi: 10.1186/s12964-015-0125-7
  • Molliex, A., Temirov, J., Lee, J., Coughlin, M., Kanagaraj, A. P., Kim, H. J., … Taylor, J. P. (2015). Phase separation by low complexity domains promotes stress granule assembly and drives pathological fibrillization. Cell, 163(1), 123–133. doi: 10.1016/j.cell.2015.09.015
  • Myers, M. P., Stolarov, J. P., Eng, C., Li, J., Wang, S. I., Wigler, M. H., … Tonks, N. K. (1997). P-TEN, the tumor suppressor from human chromosome 10q23, is a dual-specificity phosphatase. Proceedings of the National Academy of Sciences of the United States of America, 94(17), 9052–9057. doi: 10.1073/pnas.94.17.9052
  • Ng, J. W., Lama, D., Lukman, S., Lane, D. P., Verma, C. S., & Sim, A. Y. (2015). R248Q mutation–Beyond p53-DNA binding. Proteins: Structure, Function, and Bioinformatics, 83(12), 2240–2250. doi: 10.1002/prot.24940
  • Nguyen, H. N. (2015). A new class of cancer-associated PTEN mutations defined by membrane. Oncology 34(28), 3737–3743. doi: 10.1038/onc.2014.293
  • Papa, A., Wan, L., Bonora, M., Salmena, L., Song, M. S., Hobbs, R. M., … Pandolfi, P. P. (2014). Cancer-associated PTEN mutants act in a dominant-negative manner to suppress PTEN protein function. Cell, 157(3), 595–610. doi: 10.1016/j.cell.2014.03.027
  • Posey, A. E., Holehouse, A. S., & Pappu, R. V. (2018). Phase separation of intrinsically disordered proteins. Methods in Enzymology, 611, 1–30. doi: 10.1016/bs.mie.2018.09.035
  • Rangel, L. P., Costa, D. C., Vieira, T. C., & Silva, J. L. (2014). The aggregation of mutant p53 produces prion-like properties in cancer. Prion, 8(1), 75–84. doi: 10.4161/pri.27776
  • Roland, B. P., Kodali, R., Mishra, R., & Wetzel, R. (2013). A serendipitous survey of prediction algorithms for amyloidogenicity. Biopolymers, 100(6), 780–789. doi: 10.1002/bip.22305
  • Ross, C. A., & Poirier, M. A. (2004). Protein aggregation and neurodegenerative disease. Nature Medicine, 10(S7), S10–S17. doi: 10.1038/nm1066
  • Silva, J. L., De Moura Gallo, C. V., Costa, D. C., & Rangel, L. P. (2014). Prion-like aggregation of mutant p53 in cancer. Trends in Biochemical Sciences, 39(6), 260–267. doi: 10.1016/j.tibs.2014.04.001
  • Smith, L. M., & Kelleher, N. L., & The Consortium for Top Down, Proteomics. (2013). Proteoform: a single term describing protein complexity. Nature Methods, 10(3), 186–187. doi: 10.1038/nmeth.2369
  • Song, M. S., Salmena, L., Carracedo, A., Egia, A., Lo-Coco, F., Teruya-Feldstein, J., & Pandolfi, P. P. (2008). The deubiquitinylation and localization of PTEN are regulated by a HAUSP-PML network. Nature, 455(7214), 813–817. doi: 10.1038/nature07290
  • Song, M. S., Salmena, L., & Pandolfi, P. P. (2012). The functions and regulation of the PTEN tumour suppressor. Nature Reviews Molecular Cell Biology, 13(5), 283–296. doi: 10.1038/nrm3330
  • Soragni, A., Janzen, D. M., Johnson, L. M., Lindgren, A. G., Thai-Quynh Nguyen, A., Tiourin, E., … Eisenberg, D. S. (2016). A designed inhibitor of p53 aggregation rescues p53 tumor suppression in ovarian carcinomas. Cancer Cell, 29(1), 90–103. doi: 10.1016/j.ccell.2015.12.002
  • Stefani, M., & Dobson, C. M. (2003). Protein aggregation and aggregate toxicity: new insights into protein folding, misfolding diseases and biological evolution. Journal of Molecular Medicine (Berlin), 81(11), 678–699. doi: 10.1007/s00109-003-0464-5
  • Stenson, P. D., Ball, E. V., Mort, M., Phillips, A. D., Shiel, J. A., Thomas, N. S. T., … Cooper, D. N. (2003). Human gene mutation database (HGMD): 2003 update. Human Mutation, 21(6), 577–581. doi: 10.1002/humu.10212
  • Suzuki, K. (2012). Diagnosis and treatment of multiple myeloma and AL amyloidosis with focus on improvement of renal lesion. Clinical and Experimental Nephrology, 16(5), 659–671. doi: 10.1007/s10157-012-0684-5
  • Tjernberg, L., Hosia, W., Bark, N., Thyberg, J., & Johansson, J. (2002). Charge attraction and beta propensity are necessary for amyloid fibril formation from tetrapeptides. Journal of Biological Chemistry, 277(45), 43243–43246. doi: 10.1074/jbc.M205570200
  • Turoverov, K. K., Kuznetsova, I. M., Fonin, A. V., Darling, A. L., Zaslavsky, B. Y., & Uversky, V. N. (2019). Stochasticity of biological soft matter: emerging concepts in intrinsically disordered proteins and biological phase separation. Trends in Biochemical Science. doi: 10.1016/j.tibs.2019.03.005
  • Tzani, I., Ivanov, I. P., Andreev, D. E., Dmitriev, R. I., Dean, K. A., Baranov, P. V., … Loughran, G. (2016). Systematic analysis of the PTEN 5' leader identifies a major AUU initiated proteoform. Open Biology, 6(5), 150203. doi: 10.1098/rsob.150203
  • Uversky, V., Talapatra, A., Gillespie, J. R., & Fink, A. L. (1999a). Protein deposits as the molecular basis of amyloidosis. Part I. Systemic amyloidoses. Medical Science Monitor, 5(5), 1001–1012.
  • Uversky, V., Talapatra, A., Gillespie, J. R., & Fink, A. L. (1999b). Protein deposits as the molecular basis of amyloidosis. Part II. Localized amyloidosis and neurodegenerative disorders. Medical Science Monitor, 5(6), 1238–1254.
  • Uversky, V. N. (2003). A protein-chameleon: conformational plasticity of alpha-synuclein, a disordered protein involved in neurodegenerative disorders. Journal of Biomolecular Structure and Dynamics, 21(2), 211–234. doi: 10.1080/07391102.2003.10506918
  • Uversky, V. N. (2016a). Dancing protein clouds: the strange biology and chaotic physics of intrinsically disordered proteins. Journal of Biological Chemistry, 291(13), 6681–6688. doi: 10.1074/jbc.R115.685859
  • Uversky, V. N. (2016b). p53 proteoforms and intrinsic disorder: an illustration of the protein structure-function continuum concept. International Journal of Molecular Science, 17(11), 17111874. doi: 10.3390/ijms17111874
  • Uversky, V. N. (2017). Intrinsically disordered proteins in overcrowded milieu: membrane-less organelles, phase separation, and intrinsic disorder. Current Opinion in Structural Biology, 44, 18–30. doi: 10.1016/j.sbi.2016.10.015
  • Uversky, V. N. (2017). Protein intrinsic disorder-based liquid-liquid phase transitions in biological systems: complex coacervates and membrane-less organelles. Advances in Colloid and Interface Science, 239, 97–114. doi: 10.1016/j.cis.2016.05.012
  • Uversky, V. N. (2017). The roles of intrinsic disorder-based liquid-liquid phase transitions in the "Dr. Jekyll-Mr. Hyde" behavior of proteins involved in amyotrophic lateral sclerosis and frontotemporal lobar degeneration. Autophagy, 13(12), 2115–2162. doi: 10.1080/15548627.2017.1384889
  • Uversky, V. N., Dave, V., Iakoucheva, L. M., Malaney, P., Metallo, S. J., Pathak, R. R., & Joerger, A. C. (2014). Pathological unfoldomics of uncontrolled chaos: intrinsically disordered proteins and human diseases. Chemical Reviews, 114(13), 6844–6879. doi: 10.1021/cr400713r
  • Uversky, V. N., Kuznetsova, I. M., Turoverov, K. K., & Zaslavsky, B. (2015). Intrinsically disordered proteins as crucial constituents of cellular aqueous two phase systems and coacervates. FEBS Letters, 589(1), 15–22. doi: 10.1016/j.febslet.2014.11.028
  • Uversky, V. N., Oldfield, C. J., & Dunker, A. K. (2008). Intrinsically disordered proteins in human diseases: introducing the D2 concept. Annual Review of Biophysics, 37(1), 215–246. doi: 10.1146/annurev.biophys.37.032807.125924
  • van der Kant, R., Karow-Zwick, A. R., Van Durme, J., Blech, M., Gallardo, R., Seeliger, D., … Rousseau, F. (2017). Prediction and reduction of the aggregation of monoclonal antibodies. Journal of Molecular Biology, 429(8), 1244–1261. doi: 10.1016/j.jmb.2017.03.014
  • Vazquez, F., Ramaswamy, S., Nakamura, N., & Sellers, W. R. (2000). Phosphorylation of the PTEN tail regulates protein stability and function. Molecular and Cellular Biology, 20(14), 5010–5018. doi: 10.1128/mcb.20.14.5010-5018.2000
  • Wang, W., Nema, S., & Teagarden, D. (2010). Protein aggregation–pathways and influencing factors. International Journal of Pharmaceutics, 390(2), 89–99. doi: 10.1016/j.ijpharm.2010.02.025
  • Wegmann, S., Eftekharzadeh, B., Tepper, K., Zoltowska, K. M., Bennett, R. E., Dujardin, S., … Hyman, B. T. (2018). Tau protein liquid-liquid phase separation can initiate tau aggregation. EMBO Journal 37(7), e98049. doi: 10.15252/embj.201798049
  • Wilcken, R., Wang, G., Boeckler, F. M., & Fersht, A. R. (2012). Kinetic mechanism of p53 oncogenic mutant aggregation and its inhibition. Proceedings of the National Academy of Sciences of the United States of America, 109(34), 13584–13589. doi: 10.1073/pnas.1211550109
  • Willis, A., Jung, E. J., Wakefield, T., & Chen, X. (2004). Mutant p53 exerts a dominant negative effect by preventing wild-type p53 from binding to the promoter of its target genes. Oncogene, 23(13), 2330–2338. doi: 10.1038/sj.onc.1207396
  • Xu, J., Reumers, J., Couceiro, J. R., De Smet, F., Gallardo, R., Rudyak, S., … Schymkowitz, J. (2011). Gain of function of mutant p53 by coaggregation with multiple tumor suppressors. Nature Chemical Biology, 7(5), 285–295. doi: 10.1038/nchembio.546
  • Yin, Y., & Shen, W. H. (2008). PTEN: a new guardian of the genome. Oncogene, 27(41), 5443–5453. doi: 10.1038/onc.2008.241
  • Zhao, B., & Xue, B. (2018). Decision-tree based meta-strategy improved accuracy of disorder prediction and identified novel disordered residues inside binding motifs. International Journal of Molecular Science, 19(10), 19103052. doi: 10.3390/ijms19103052

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.