655
Views
23
CrossRef citations to date
0
Altmetric
Research Articles

Structural analysis, molecular docking and molecular dynamics simulations of G-protein-coupled receptor (kisspeptin) in fish

, , , , &
Pages 2422-2439 | Received 20 Mar 2019, Accepted 12 Jun 2019, Published online: 27 Jun 2019

References

  • Amiri, S., Sansom, M. S., & Biggin, P. C. (2007). Molecular dynamics studies of AChBP with nicotine and carbamylcholine: The role of water in the binding pocket. Protein Engineering, Design & Selection, 20(7), 353–359. doi:10.1093/protein/gzm029
  • Amodeo, D. A., Cuevas, L., Dunn, J. T., Sweeney, J. A., & Ragozzino, M. E. (2018). The adenosine A2A receptor agonist, CGS 21680, attenuates a probabilistic reversal learning deficit and elevated grooming behavior in BTBR mice. Autism Research, 11(2), 223–233. doi:10.1002/aur.1901
  • Bao, R., Shui, X., Hou, J., Li, J., Deng, X., Zhu, X., & Yang, T. (2016). Adenosine and the adenosine A2A receptor agonist, CGS21680, upregulate CD39 and CD73 expression through E2F-1 and CREB in regulatory T cells isolated from septic mice. International Journal of Molecular Medicine, 38(3), 969–975. doi:10.3892/ijmm.2016.2679
  • Billington, C. K., & Penn, R. B. (2003). Signaling and regulation of G protein-coupled receptors in airway smooth muscle. Respiratory Research, 4(1), 4. doi:10.1186/1465-9921-4-2
  • Biran, J., Ben-Dor, S., & Levavi-Sivan, B. (2008). Molecular identification and functional characterization of the kisspeptin/kisspeptin receptor system in lower vertebrates. Biology of Reproduction, 79(4), 776–786.
  • Castellano, J. M., Navarro, V. M., Roa, J., Pineda, R., Sánchez-Garrido, M. A., García-Galiano, D., … Tena-Sempere, M. (2009). Alterations in hypothalamic KiSS-1 system in experimental diabetes: Early changes and functional consequences. Endocrinology, 150(2), 784–794. doi:10.1210/en.2008-0849
  • Chan, Y. M., Butler, J. P., Sidhoum, V. F., Pinnell, N. E., & Seminara, S. B. (2012). Kisspeptin administration to women: A window into endogenous kisspeptin secretion and GnRH responsiveness across the menstrual cycle. The Journal of Clinical Endocrinology & Metabolism, 97(8), E1458–E1467. doi:10.1210/jc.2012-1282
  • Chiu, S. W., Pandit, S. A., Scott, H. L., & Jakobsson, E. (2009). An improved united atom force field for simulation of mixed lipid bilayers. The Journal of Physical Chemistry B, 113(9), 2748–2763. doi:10.1021/jp807056c
  • Colledge, W. H. (2004). GPR54 and puberty. Trends in Endocrinology and Metabolism, 15(9), 448–453. doi:10.1016/j.tem.2004.09.008
  • Decourt, C., Robert, V., Anger, K., Galibert, M., Madinier, J. B., Liu, X., … Herbison, A. E. (2016). A synthetic kisspeptin analog that triggers ovulation and advances puberty. Scientific reports, 6, 1–10.
  • de Roux, N., Genin, E., Carel, J. C., Matsuda, F., Chaussain, J. L., & Milgrom, E. (2003). Hypogonadotropic hypogonadism due to loss of function of the KiSS1-derived peptide receptor GPR54. Proceedings of the National Academy of Sciences, 100(19), 10972–10976. doi:10.1073/pnas.1834399100
  • Escobar, S., Felip, A., Gueguen, M. M., Zanuy, S., Carrillo, M., Kah, O., & Servili, A. (2013). Expression of kisspeptins in the brain and pituitary of the European sea bass (Dicentrarchus labrax). Journal of Comparative Neurology, 521(4), 933–948. doi:10.1002/cne.23211
  • Fairgrieve, M. R., Shibata, Y., Smith, E. K., Hayman, E. S., & Luckenbach, J. A. (2016). Molecular characterization of the gonadal kisspeptin system: Cloning, tissue distribution, gene expression analysis and localization in sablefish (Anoplopoma fimbria). General and Comparative Endocrinology, 225, 212–223. doi:10.1016/j.ygcen.2015.07.015
  • Felip, A., Zanuy, S., Pineda, R., Pinilla, L., Carrillo, M., Tena-Sempere, M., & Gómez, A. (2009). Evidence for two distinct KiSS genes in non-placental vertebrates that encode kisspeptins with different gonadotropin-releasing activities in fish and mammals. Molecular and Cellular Endocrinology, 312(1-2), 61–71. doi:10.1016/j.mce.2008.11.017
  • Feng, Z., Hou, T., & Li, Y. (2012). Studies on the interactions between β2 adrenergic receptor and Gs protein by molecular dynamics simulations. Journal of Chemical Information and Modeling, 52(4), 1005–1014. doi:10.1021/ci200594d
  • Gandhimathi, A., & Sowdhamini, R. (2016). Molecular modelling of human 5-hydroxytryptamine receptor (5-HT2A) and virtual screening studies towards the identification of agonist and antagonist molecules. Journal of Biomolecular Structure and Dynamics, 34(5), 952–970. doi:10.1080/07391102.2015.1062802
  • Hassan, M., Shahzadi, S., Seo, S. Y., Alashwal, H., Zaki, N., & Moustafa, A. A. (2018). Molecular docking and dynamic simulation of AZD3293 and solanezumab effects against BACE1 to treat Alzheimer's disease. Frontiers in Computational Neuroscience, 12, 1–11. doi:10.3389/fncom.2018.00034
  • Hodne, K., Weltzien, F. A., Oka, Y., & Okubo, K. (2013). Expression and putative function of kisspeptins and their receptors during early development in medaka. Endocrinology, 154(9), 3437–3446. doi:10.1210/en.2013-1065
  • Hospital, A., Goñi, J. R., Orozco, M., & Gelpí, J. L. (2015). Molecular dynamics simulations: Advances and applications. Advances and Applications in Bioinformatics and Chemistry, 8, 37–47. doi:10.2147/AABC.S70333.
  • Ialenti, A., Caiazzo, E., Morello, S., Carnuccio, R., & Cicala, C. (2018). Adenosine A2A receptor agonist, 2-p-(2-Carboxyethyl) phenethylamino-5′-N-ethylcarboxamidoadenosine hydrochloride hydrate, inhibits inflammation and increases fibroblast growth factor-2 tissue expression in carrageenan-induced rat paw edema. Journal of Pharmacology and Experimental Therapeutics, 364(2), 221–228. doi:10.1124/jpet.117.244319
  • Jacobson, K. A. (2010). GPCR ligand–dendrimer (GLiDe) conjugates: Future smart drugs? Trends in Pharmacological Sciences, 31(12), 575–579. doi:10.1016/j.tips.2010.09.002
  • Jacobson, K. A., Costanzi, S., & Deflorian, F. (2013). Probing GPCR structure: Adenosine and P2Y nucleotide receptors. Methods in Enzymology, 520, 199–217 . doi:10.1016/B978-0-12-391861-1.00009-5
  • Kanda, S., Karigo, T., & Oka, Y. (2012). Steroid sensitive kiss2 neurones in the goldfish: Evolutionary insights into the duplicate kisspeptin gene-expressing neurones. Journal of Neuroendocrinology, 24(6), 897–906. doi:10.1111/j.1365-2826.2012.02296.x
  • Kanda, S., & Oka, Y. (2013). Structure, synthesis, and phylogeny of kisspeptin and its receptor. Advances in Experimental Medicine and Biology, 784, 9–26. doi:10.1007/978-1-4614-6199-9_2
  • Kim, D.-K., Cho, E. B., Moon, M. J., Park, S., Hwang, J.-I., Do Rego, J.-L., … Seong, J. Y. (2012). Molecular coevolution of neuropeptides gonadotropin-releasing hormone and kisspeptin with their cognate G protein-coupled receptors. Frontiers in Neuroscience, 6, 3. doi:10.3389/fnins.2012.00003
  • Kim, N. N., Shin, H. S., Choi, Y. J., & Choi, C. Y. (2014). Kisspeptin regulates the hypothalamus–pituitary–gonad axis gene expression during sexual maturation in the cinnamon clownfish, Amphiprion melanopus. Comparative Biochemistry and Physiology Part B: Biochemistry and Molecular Biology, 168, 19–32. doi:10.1016/j.cbpb.2013.11.002
  • Kotani, M., Detheux, M., Vandenbogaerde, A., Communi, D., Vanderwinden, J.-M., Le Poul, E., … Parmentier, M. (2001). The metastasis suppressor gene KiSS-1 encodes kisspeptins, the natural ligands of the orphan G protein-coupled receptor GPR54. Journal of Biological Chemistry, 276(37), 34631–34636. doi:10.1074/jbc.M104847200
  • Kufareva, I., & Abagyan, R. (2011). Methods of protein structure comparison. Methods in Molecular Biology, 857, 231–257. doi:10.1007/978-1-61779-588-6_10
  • Lebon, G., Warne, T., Edwards, P. C., Bennett, K., Langmead, C. J., Leslie, A. G., & Tate, C. G. (2011). Agonist-bound adenosine A 2A receptor structures reveal common features of GPCR activation. Nature, 474(7352), 521. doi:10.1038/nature10136
  • Lee, Y., Basith, S., & Choi, S. (2018). Recent advances in structure-based drug design targeting class AG protein-coupled receptors utilizing crystal structures and computational simulations. Journal of Medicinal Chemistry, 61(1), 1–46. doi:10.1021/acs.jmedchem.6b01453
  • Lee, Y. R., Tsunekawa, K., Moon, M. J., Um, H. N., Hwang, J.-I., Osugi, T., … Tsutsui, K. (2009). Molecular evolution of multiple forms of kisspeptins and GPR54 receptors in vertebrates. Endocrinology, 150(6), 2837–2846. doi:10.1210/en.2008-1679
  • Levavi-Sivan, B., Bogerd, J., Mañanós, E. L., Gómez, A., & Lareyre, J. J. (2010). Perspectives on fish gonadotropins and their receptors. General and Comparative Endocrinology, 165(3), 412–437. doi:10.1016/j.ygcen.2009.07.019
  • Li, S., Zhang, Y., Liu, Y., Huang, X., Huang, W., Lu, D., … Lin, H. (2009). Structural and functional multiplicity of the kisspeptin/GPR54 system in goldfish (Carassius auratus). Journal of Endocrinology, 201(3), 407–418. doi:10.1677/JOE-09-0016
  • Lipinski, C. A., Lombardo, F., Dominy, B. W., & Feeney, P. J. (1997). Experimental and computational approaches to estimate solubility and permeability in drug discovery and development settings. Advanced Drug Delivery Reviews, 23(1–3), 3–25. doi:10.1016/S0169-409X(96)00423-1
  • Lobanov, M. Y., Bogatyreva, N. S., & Galzitskaya, O. V. (2008). Radius of gyration as an indicator of protein structure compactness. Molecular Biology, 42(4), 623–628. doi:10.1134/S0026893308040195
  • Martínez-Archundia, M., Correa-Basurto, J., Montaño, S., & Rosas-Trigueros, J. L. (2019). Studying the collective motions of the adenosine A2A receptor as a result of ligand binding using principal component analysis. Journal of Biomolecular Structure and Dynamics, 21, 1–16. doi:10.1080/07391102.2018.1564700
  • Marucci, G., Dal Ben, D., Lambertucci, C., Martí Navia, A., Spinaci, A., Volpini, R., & Buccioni, M. (2019). GPR17 receptor modulators and their therapeutic implications: Review of recent patents. Expert Opinion on Therapeutic Patents, 29(2), 85–95. doi:10.1080/13543776.2019.1568990
  • Muir, A. I., Chamberlain, L., Elshourbagy, N. A., Michalovich, D., Moore, D. J., Calamari, A., … Harrison, D. C. (2001). AXOR12, a novel human G protein-coupled receptor, activated by the peptide KiSS-1. Journal of Biological Chemistry, 276(31), 28969–28975. doi:10.1074/jbc.M102743200
  • Ohga, H., Selvaraj, S., & Matsuyama, M. (2018). The roles of kisspeptin system in the reproductive physiology of fish with special reference to chub mackerel studies as main axis. Frontiers in Endocrinology, 9, 147. doi:10.3389/fendo.2018.00147
  • Onuma, T. A., & Duan, C. (2012). Duplicated Kiss1 receptor genes in zebrafish: Distinct gene expression patterns, different ligand selectivity, and a novel nuclear isoform with transactivating activity. The FASEB Journal, 26(7), 2941–2950. doi:10.1096/fj.11-201095
  • Pandey, P., Roy, K. K., & Doerksen, R. J. (2019). Negative allosteric modulators of cannabinoid receptor 2: Protein modeling, binding site identification and molecular dynamics simulations in the presence of an orthosteric agonist. Journal of Biomolecular Structure and Dynamics, 5, 1–16. doi:10.1080/07391102.2019.1567384
  • Pankhurst, N. W., & Thomas, P. M. (1998). Maintenance at elevated temperature delays the steroidogenic and ovulatory responsiveness of rainbow trout Oncorhynchus mykiss to luteinizing hormone releasing hormone analogue. Aquaculture, 166(1–2), 163–177. doi:10.1016/S0044-8486(98)00284-1
  • Pronk, S., Páll, S., Schulz, R., Larsson, P., Bjelkmar, P., Apostolov, R., … Lindahl, E. (2013). GROMACS 4.5: A high-throughput and highly parallel open source molecular simulation toolkit. Bioinformatics, 29(7), 845–854. doi:10.1093/bioinformatics/btt055
  • Rather, M. A., Basha, S. H., Bhat, I. A., Sharma, N., Nandanpawar, P., Badhe, M., … Sharma, R. (2017a). Characterization, molecular docking, dynamics simulation and metadynamics of kisspeptin receptor with kisspeptin. International Journal of Biological Macromolecules, 101, 241–253. doi:10.1016/j.ijbiomac.2017.03.102
  • Rather, M. A., Bhat, I. A., Rathor, P. K., Gireesh-Babu, P., Chaudhari, A., Kumar, S. J., & Sharma, R. (2017b). In silico analysis and expression studies of kisspeptin gene in C. catla. Journal of Biomolecular Structure and Dynamics, 35(11), 2485–2496. doi:10.1080/07391102.2016.1222970
  • Rather, M. A., Bhat, I. A., Sharma, N., Sharma, R., P, G.-B., Chaudhari, A., & Sundaray, J. K. (2016). Molecular characterization, tissue distribution of Follicle‐Stimulating Hormone (FSH) beta subunit and effect of kisspeptin‐10 on reproductive hormonal profile of Catla catla (Hamilton, 1822). Aquaculture Research, 47(7), 2089–2100. doi:10.1111/are.12663
  • Rather, M. A., Sharma, R., Gupta, S., Ferosekhan, S., Ramya, V. L., & Jadhao, S. B. (2013). Chitosan-nanoconjugated hormone nanoparticles for sustained surge of gonadotropins and enhanced reproductive output in female fish. PLoS One, 8(2), e57094. doi:10.1371/journal.pone.0057094
  • Roa, J., Aguilar, E., Dieguez, C., Pinilla, L., & Tena-Sempere, M. (2008). New frontiers in kisspeptin/GPR54 physiology as fundamental gatekeepers of reproductive function. Frontiers in Neuroendocrinology, 29(1), 48–69. doi:10.1016/j.yfrne.2007.07.002
  • Roa, J., Navarro, V. M., & Tena-Sempere, M. (2011). Kisspeptins in reproductive biology: Consensus knowledge and recent developments. Biology of Reproduction, 85(4), 650–660. doi:10.1095/biolreprod.111.091538
  • Roseweir, A. K., & Millar, R. P. (2008). The role of kisspeptin in the control of gonadotrophin secretion. Human Reproduction Update, 15(2), 203–212. doi:10.1093/humupd/dmn058
  • Schüttelkopf, A. W., & Van Aalten, D. M. (2004). PRODRG: A tool for high-throughput crystallography of protein–ligand complexes. Acta Crystallographica Section D Biological Crystallography, 60(8), 1355–1363. doi:10.1107/S0907444904011679
  • Selvaraj, S., Kitano, H., Fujinaga, Y., Ohga, H., Yoneda, M., Yamaguchi, A., … Matsuyama, M. (2010). Molecular characterization, tissue distribution, and mRNA expression profiles of two Kiss genes in the adult male and female chub mackerel (Scomber japonicus) during different gonadal stages. General and Comparative Endocrinology, 169(1), 28–38. doi:10.1016/j.ygcen.2010.07.011
  • Seminara, S. B., Messager, S., Chatzidaki, E. E., Thresher, R. R., Acierno, J. S., Shagoury, J. K., … Colledge, W. H. (2003). The GPR54 gene as a regulator of puberty. The New England Journal of Medicine, 349(17), 1614–1627. doi:10.1056/NEJMoa035322
  • Servili, A., Le Page, Y., Leprince, J., Caraty, A., Escobar, S., Parhar, I. S., … Kah, O. (2011). Organization of two independent kisspeptin systems derived from evolutionary-ancient kiss genes in the brain of zebrafish. Endocrinology, 152(4), 1527–1540. doi:10.1210/en.2010-0948
  • Shahab, M., Mastronardi, C., Seminara, S. B., Crowley, W. F., Ojeda, S. R., & Plant, T. M. (2005). Increased hypothalamic GPR54 signaling: A potential mechanism for initiation of puberty in primates. Proceedings of the National Academy of Sciences of the United States of America, 102(6), 2129–2134. doi:10.1073/pnas.0409822102
  • Shahjahan, M., Kitahashi, T., & Parhar, I. S. (2014). Central pathways integrating metabolism and reproduction in teleosts. Frontiers in Endocrinology, 5, 36. doi:10.3389/fendo.2014.00036
  • Taranger, G. L., Carrillo, M., Schulz, R. W., Fontaine, P., Zanuy, S., Felip, A., … Hansen, T. (2010). Control of puberty in farmed fish. General and Comparative Endocrinology, 165(3), 483–515. doi:10.1016/j.ygcen.2009.05.004
  • Tena-Sempere, M., Felip, A., Gómez, A., Zanuy, S., & Carrillo, M. (2012). Comparative insights of the kisspeptin/kisspeptin receptor system: Lessons from non-mammalian vertebrates. General and Comparative Endocrinology, 175(2), 234–243. doi:10.1016/j.ygcen.2011.11.015
  • Whitlock, B. K., Daniel, J. A., Amelse, L. L., Tanco, V. M., Chameroy, K. A., & Schrick, F. N. (2015). Kisspeptin receptor agonist (FTM080) increased plasma concentrations of luteinizing hormone in anestrous ewes. PeerJ, 3, e1382. doi:10.7717/peerj.1382
  • Zeh, J. A., Bonilla, M. M., Su, E. J., Padua, M. V., Anderson, R. V., Kaur, D., … Zeh, D. W. (2012). Degrees of disruption: Projected temperature increase has catastrophic consequences for reproduction in a tropical ectotherm. Global Change Biology, 18(6), 1833–1842. doi:10.1111/j.1365-2486.2012.02640.x
  • Zmora, N., Stubblefield, J., Zulperi, Z., Biran, J., Levavi-Sivan, B., Muñoz-Cueto, J. A., & Zohar, Y. (2012). Differential and gonad stage-dependent roles of kisspeptin1 and kisspeptin2 in reproduction in the modern teleosts, morone species. Biology of Reproduction, 86(6), 177–171. doi:10.1095/biolreprod.111.097667

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.