224
Views
2
CrossRef citations to date
0
Altmetric
Research Articles

Investigating the reason for loss-of-function of Src homology 2 domain-containing protein tyrosine phosphatase 2 (SHP2) caused by Y279C mutation through molecular dynamics simulation

, , , , , & show all
Pages 2509-2520 | Received 23 Apr 2019, Accepted 17 Jun 2019, Published online: 01 Jul 2019

References

  • Balmith, M., & Soliman, M. E. (2017). Non-active site mutations disturb the loop dynamics, dimerization, viral budding and egress of VP40 of the Ebola virus. Molecular Biosystems, 13(3), 585–597. doi: 10.1039/C6MB00803H
  • Brysbaert, G., Blossey, R., & Lensink, M. F. (2018). The inclusion of water molecules in residue interaction networks identifies additional central residues. Frontiers in Molecular Biosciences, 5, 88. doi: 10.3389/fmolb.2018.00088
  • Carcavilla, A., Santomé, J. L., Pinto, I., Sánchez-Pozo, J., Guillén-Navarro, E., Martín-Frías, M., … Ezquieta, B. (2013). LEOPARD syndrome: A variant of Noonan syndrome strongly associated with hypertrophic cardiomyopathy. Revista Española de Cardiología (English Edition), 66(5), 350–356. doi: 10.1016/j.rec.2012.09.015
  • Carugo, O., & Djinovic-Carugo, K. (2013a). Half a century of Ramachandran plots. Acta Crystallographica Section D Biological Crystallography, 69(8), 1333–1341. doi: 10.1107/S090744491301158X
  • Carugo, O., & Djinovic-Carugo, K. (2013b). A proteomic Ramachandran plot (PRplot). Amino Acids, 44(2), 781–790. doi: 10.1007/s00726-012-1402-z
  • David, C. C., & Jacobs, D. J. (2014). Principal component analysis: A method for determining the essential dynamics of proteins. Methods in Molecular Biology, 1084, 193–226. doi: 10.1007/978-1-62703-658-0_11
  • Farrokhzadeh, A., Akher, F. B., & Soliman, M. E. S. (2018). Probing the dynamic mechanism of uncommon allosteric inhibitors optimized to enhance drug selectivity of SHP2 with therapeutic potential for cancer treatment. Applied Biochemistry and Biotechnology, 188(1), 260–281. doi: 10.1007/s12010-018-2914-0
  • Garcia Fortanet, J., Chen, C. H.-T., Chen, Y.-N. P., Chen, Z., Deng, Z., Firestone, B., … LaMarche, M. J. (2016). Allosteric Inhibition of SHP2: Identification of a potent, selective, and orally efficacious phosphatase inhibitor. Journal of Medicinal Chemistry, 59(17), 7773–7782. doi: 10.1021/acs.jmedchem.6b00680
  • Grant, B. J., Rodrigues, A. P., ElSawy, K. M., McCammon, J. A., & Caves, L. S. (2006). Bio3d: An R package for the comparative analysis of protein structures. Bioinformatics, 22(21), 2695–2696. doi: 10.1093/bioinformatics/btl461
  • Hanna, N., Montagner, A., Lee, W. H., Miteva, M., Vidal, M., Vidaud, M., … Raynal, P. (2006). Reduced phosphatase activity of SHP-2 in LEOPARD syndrome: Consequences for PI3K binding on Gab1. FEBS Letters, 580(10), 2477–2482. doi: 10.1016/j.febslet.2006.03.088
  • Hatmal, M. M., Jaber, S., & Taha, M. O. (2016). Combining molecular dynamics simulation and ligand–receptor contacts analysis as a new approach for pharmacophore modeling: Beta-secretase 1 and check point kinase 1 as case studies. Journal of Computer-Aided Molecular Design, 30(12), 1149–1163. doi: 10.1007/s10822-016-9984-2
  • Hess, B. (2008). P-LINCS: A parallel linear constraint solver for molecular simulation. Journal of Chemical Theory and Computation, 4(1), 116–122. doi: 10.1021/ct700200b
  • Hof, P., Pluskey, S., Dhe-Paganon, S., Eck, M. J., & Shoelson, S. E. (1998). Crystal structure of the tyrosine phosphatase SHP-2. Cell, 92(4), 441–450.
  • Ishida, H., Kogaki, S., Narita, J., Ichimori, H., Nawa, N., Okada, Y., … Ozono, K. (2011). LEOPARD-type SHP2 mutant Gln510Glu attenuates cardiomyocyte differentiation and promotes cardiac hypertrophy via dysregulation of Akt/GSK-3beta/beta-catenin signaling. American Journal of Physiology-Heart and Circulatory Physiology, 301(4), H1531–1539. doi: 10.1152/ajpheart.00216.2011
  • Ishikita, H., & Saito, K. (2013). Proton transfer reactions and hydrogen-bond networks in protein environments. Journal of the Royal Society Interface, 11(91), 20130518. doi: 10.1098/rsif.2013.0518
  • Kan, W., Fang, F., Chen, L., Wang, R., & Deng, Q. (2016). Influence of the R823W mutation on the interaction of the ANKS6–ANKS3: Insights from molecular dynamics simulation and free energy analysis. Journal of Biomolecular Structure and Dynamics, 34(5), 1113–1122. doi: 10.1080/07391102.2015.1071281
  • Keren, B., Hadchouel, A., Saba, S., Sznajer, Y., Bonneau, D., Leheup, B, … French Collaborative Noonan Study, Group. (2004). PTPN11 mutations in patients with LEOPARD syndrome: A French multicentric experience. Journal of Medical Genetics, 41(11), e117. doi: 10.1136/jmg.2004.021451
  • Kumar, P., Ghosh Sachan, S., & Poddar, R. (2017). Mutational analysis of microbial hydroxycinnamoyl-CoA hydratase-lyase (HCHL) towards enhancement of binding affinity: A computational approach. Journal of Molecular Graphics and Modelling, 77, 94–105. doi: 10.1016/j.jmgm.2017.08.014
  • Li, H. L., Ma, Y., Zheng, C. J., Jin, W. Y., Liu, W. S., & Wang, R. L. (2017). Exploring the effect of D61G mutation on SHP2 cause gain of function activity by a molecular dynamics study. Journal of Biomolecular Structure and Dynamics, 36(14), 3856–3868. doi: 10.1080/07391102.2017.1402709
  • Li, J., Bewley, J. D., Hua, Z., Zheng, W., & Wang, A. (2008). Model and molecular dynamic simulations of active and inactive endo-beta-1,4-mannanase in tomato fruit. The Protein Journal, 27(6), 363–370. doi: 10.1007/s10930-008-9145-0
  • Li, R., Baskfield, A., Lin, Y., Beers, J., Zou, J., Liu, C., … Zheng, W. (2019). Generation of an induced pluripotent stem cell line (TRNDi003-A) from a Noonan syndrome with multiple lentigines (NSML) patient carrying a p.Q510P mutation in the PTPN11 gene. Stem Cell Research, 34, 101374. doi: 10.1016/j.scr.2018.101374
  • Li, X., Wang, X., Tian, Z., Zhao, H., Liang, D., Li, W., … Lu, S. (2014). Structural basis of valmerins as dual inhibitors of GSK3beta/CDK5. Journal of Molecular Modeling, 20(9), 2407. doi: 10.1007/s00894-014-2407-1
  • Limongelli, G., Pacileo, G., Marino, B., Digilio, M. C., Sarkozy, A., Elliott, P., … Calabro, R. (2007). Prevalence and clinical significance of cardiovascular abnormalities in patients with the LEOPARD syndrome. The American Journal of Cardiology, 100(4), 736–741. doi: 10.1016/j.amjcard.2007.03.093
  • Machaba, K. E., Mhlongo, N. N., & Soliman, M. E. S. (2018). Induced mutation proves a potential target for TB therapy: A molecular dynamics study on LprG. Cell Biochemistry and Biophysics, 76(3), 345–356. doi: 10.1007/s12013-018-0852-7
  • Mahmoodi, Y., Mehrnejad, F., & Khalifeh, K. (2018). Understanding the interactions of human follicle stimulating hormone with single-walled carbon nanotubes by molecular dynamics simulation and free energy analysis. European Biophysics Journal, 47(1), 49–57. doi: 10.1007/s00249-017-1228-4
  • Martinez-Quintana, E., & Rodriguez-Gonzalez, F. (2012). LEOPARD syndrome: Clinical features and gene mutations. Molecular Syndromology, 3(4), 145–157, doi: 10.1159/000342251
  • Mehla, K., & Ramana, J. (2016). Travelers' diarrhea-associated enterotoxigenic Escherichia coli gyrA mutants and quinolone antibiotic affinity: A molecular dynamics simulation and residue interaction network analysis. OMICS, 20(11), 635–644. doi: 10.1089/omi.2016.0104
  • Moglich, A., Joder, K., & Kiefhaber, T. (2006). End-to-end distance distributions and intrachain diffusion constants in unfolded polypeptide chains indicate intramolecular hydrogen bond formation. Proceedings of the National Academy of Sciences of the United States of America, 103(33), 12394–12399. doi: 10.1073/pnas.0604748103
  • Narang, S. S., Shuaib, S., Goyal, D., & Goyal, B. (2018). Assessing the effect of D59P mutation in the DE loop region in amyloid aggregation propensity of beta2-microglobulin: A molecular dynamics simulation study. Journal of Cellular Biochemistry, 119(1), 782–792. doi: 10.1002/jcb.26241
  • Ndagi, U., Mhlongo, N. N., & Soliman, M. E. (2017). The impact of Thr91 mutation on c-Src resistance to UM-164: Molecular dynamics study revealed a new opportunity for drug design. Molecular Biosystems, 13(6), 1157–1171. doi: 10.1039/C6MB00848H
  • Neel, B. G., Gu, H., & Pao, L. (2003). The 'Shp'ing news: SH2 domain-containing tyrosine phosphatases in cell signaling. Trends in Biochemical Sciences, 28(6), 284–293. doi: 10.1016/S0968-0004(03)00091-4
  • Niu, Y., Shi, D., Li, L., Guo, J., Liu, H., & Yao, X. (2017). Revealing inhibition difference between PFI-2 enantiomers against SETD7 by molecular dynamics simulations, binding free energy calculations and unbinding pathway analysis. Scientific Reports, 7(1), 46547. doi: 10.1038/srep46547
  • Noda, S., Takahashi, A., Hayashi, T., Tanuma, S., & Hatakeyama, M. (2016). Determination of the catalytic activity of LEOPARD syndrome-associated SHP2 mutants toward parafibromin, a bona fide SHP2 substrate involved in Wnt signaling. Biochemical and Biophysical Research Communications, 469(4), 1133–1139. doi: 10.1016/j.bbrc.2015.12.117
  • Paardekooper Overman, J., Preisinger, C., Prummel, K., Bonetti, M., Giansanti, P., Heck, A., & den Hertog, J. (2014). Phosphoproteomics-mediated identification of Fer kinase as a target of mutant Shp2 in Noonan and LEOPARD syndrome. PLoS One, 9(9), e106682. doi: 10.1371/journal.pone.0106682
  • Pal, D., & Chakrabarti, P. (2002). On residues in the disallowed region of the Ramachandran map. Biopolymers, 63(3), 195–206. doi: 10.1002/bip.10051
  • Park, I. H., Venable, J. D., Steckler, C., Cellitti, S. E., Lesley, S. A., Spraggon, G., & Brock, A. (2015). Estimation of hydrogen-exchange protection factors from MD simulation based on amide hydrogen bonding analysis. Journal of Chemical Information and Modeling, 55(9), 1914–1925. doi: 10.1021/acs.jcim.5b00185
  • Pei, D., Wang, J., & Walsh, C. T. (1996). Differential functions of the two Src homology 2 domains in protein tyrosine phosphatase SH-PTP1. Proceedings of the National Academy of Sciences of the United States of America, 93(3), 1141–1145. doi: 10.1073/pnas.93.3.1141
  • Rashid, S., Saraswathi, S., Kloczkowski, A., Sundaram, S., & Kolinski, A. (2016). Protein secondary structure prediction using a small training set (compact model) combined with a complex-valued neural network approach. BMC Bioinformatics, 17(1), 362. doi: 10.1186/s12859-016-1209-0
  • Sarkozy, A., Digilio, M. C., & Dallapiccola, B. (2008). Leopard syndrome. Orphanet Journal of Rare Diseases, 3(1), 13. doi: 10.1186/1750-1172-3-13
  • Sigala, P. A., Ruben, E. A., Liu, C. W., Piccoli, P. M. B., Hohenstein, E. G., Martínez, T. J., … Herschlag, D. (2015). Determination of hydrogen bond structure in water versus aprotic environments to test the relationship between length and stability. Journal of the American Chemical Society, 137(17), 5730–5740. doi: 10.1021/ja512980h
  • Spatola, M., Wider, C., Kuntzer, T., & Croquelois, A. (2015). PTPN11 mutation manifesting as LEOPARD syndrome associated with hypertrophic plexi and neuropathic pain. BMC Neurology, 15(1), 55. doi: 10.1186/s12883-015-0310-8
  • Sun, D. R., Zheng, Q. C., & Zhang, H. X. (2017). Probing the interaction mechanism of small molecule inhibitors with matriptase based on molecular dynamics simulation and free energy calculations. Journal of Biomolecular Structure and Dynamics, 35(4), 755–764. doi: 10.1080/07391102.2016.1160259
  • Tajan, M., Batut, A., Cadoudal, T., Deleruyelle, S., Le Gonidec, S., Saint Laurent, C., … Yart, A. (2014). LEOPARD syndrome-associated SHP2 mutation confers leanness and protection from diet-induced obesity. Proceedings of the National Academy of Sciences of the United States of America, 111(42), E4494–E4503. doi: 10.1073/pnas.1406107111
  • Takano, Y., Nakata, K., Yonezawa, Y., & Nakamura, H. (2016). Development of massive multilevel molecular dynamics simulation program, Platypus (PLATform for dYnamic Protein Unified Simulation), for the elucidation of protein functions. Journal of Computational Chemistry, 37(12), 1125–1132. doi: 10.1002/jcc.24318
  • Ul Haq, F., Abro, A., Raza, S., Liedl, K. R., & Azam, S. S. (2017). Molecular dynamics simulation studies of novel beta-lactamase inhibitor. Journal of Molecular Graphics and Modelling, 74, 143–152. doi: 10.1016/j.jmgm.2017.03.002
  • Vermeire, K., Wexler, L., & Vambutas, A. (2016). The experience of bilateral cochlear implantation in a child with LEOPARD syndrome. International Journal of Pediatric Otorhinolaryngology, 90, 125–127. doi: 10.1016/j.ijporl.2016.09.013
  • Wan, H., Hu, J. P., Tian, X. H., & Chang, S. (2013). Molecular dynamics simulations of wild type and mutants of human complement receptor 2 complexed with C3d. Physical Chemistry Chemical Physics, 15(4), 1241–1251. doi: 10.1039/C2CP41388D
  • Wang, J., Shu, M., Wang, Y., Hu, Y., Wang, Y., Luo, Y., & Lin, Z. (2016). Identification of potential CCR5 inhibitors through pharmacophore-based virtual screening, molecular dynamics simulation and binding free energy analysis. Molecular Biosystems, 12(11), 3396–3406. doi: 10.1039/C6MB00577B
  • Wang, R. R., Ma, Y., Du, S., Li, W. Y., Sun, Y. Z., Zhou, H., & Wang, R. L. (2019). Exploring the reason for increased activity of SHP2 caused by D61Y mutation through molecular dynamics. Computational Biology and Chemistry, 78, 133–143. doi: 10.1016/j.compbiolchem.2018.10.013
  • Webb, B., & Sali, A. (2016). Comparative protein structure modeling using MODELLER. Current Protocols in Protein Science, 86, 2.9.1–2.9.37. doi: 10.1002/cpps.20
  • Xu, L., Kong, R., Zhu, J., Sun, H., & Chang, S. (2016). Unraveling the conformational determinants of LARP7 and 7SK small nuclear RNA by theoretical approaches. Molecular Biosystems, 12(8), 2613–2621. doi: 10.1039/C6MB00252H
  • Xue, W., Ban, Y., Liu, H., & Yao, X. (2014a). Computational study on the drug resistance mechanism against HCV NS3/4A protease inhibitors vaniprevir and MK-5172 by the combination use of molecular dynamics simulation, residue interaction network, and substrate envelope analysis. Journal of Chemical Information and Modeling, 54(2), 621–633. doi: 10.1021/ci400060j
  • Xue, W., Jiao, P., Liu, H., & Yao, X. (2014b). Molecular modeling and residue interaction network studies on the mechanism of binding and resistance of the HCV NS5B polymerase mutants to VX-222 and ANA598. Antiviral Research, 104, 40–51. doi: 10.1016/j.antiviral.2014.01.006
  • Yang, Y., Gao, J., Wang, J., Heffernan, R., Hanson, J., Paliwal, K., & Zhou, Y. (2018). Sixty-five years of the long march in protein secondary structure prediction: The final stretch? Briefings in Bioinformatics, 19(3), 482–494. doi: 10.1093/bib/bbw129
  • Yang, Y., Liu, H., & Yao, X. (2012). Understanding the molecular basis of MK2-p38alpha signaling complex assembly: Insights into protein-protein interaction by molecular dynamics and free energy studies. Molecular Biosystems, 8(8), 2106–2118. doi: 10.1039/c2mb25042j
  • Yesudhas, D., Anwar, M. A., Panneerselvam, S., Durai, P., Shah, M., & Choi, S. (2016). Structural mechanism behind distinct efficiency of Oct4/Sox2 proteins in differentially spaced DNA complexes. PLoS One, 11(1), e0147240. doi: 10.1371/journal.pone.0147240
  • Yu, Z.-H., Xu, J., Walls, C. D., Chen, L., Zhang, S., Zhang, R., … Zhang, Z.-Y. (2013). Structural and mechanistic insights into LEOPARD syndrome-associated SHP2 mutations. Journal of Biological Chemistry, 288(15), 10472–10482. doi: 10.1074/jbc.M113.450023
  • Yu, Z.-H., Zhang, R.-Y., Walls, C. D., Chen, L., Zhang, S., Wu, L., … Zhang, Z.-Y. (2014). Molecular basis of gain-of-function LEOPARD syndrome-associated SHP2 mutations. Biochemistry, 53(25), 4136–4151. doi: 10.1021/bi5002695
  • Zhang, L. (2017). Different dynamics and pathway of disulfide bonds reduction of two human defensins, a molecular dynamics simulation study. Proteins: Structure, Function, and Bioinformatics, 85(4), 665–681. doi: 10.1002/prot.25247
  • Zhang, Y. J., Ding, J. N., Zhong, H., & Han, J. G. (2017). Exploration micromechanism of VP35 IID interaction and recognition dsRNA: A molecular dynamics simulation. Proteins: Structure, Function, and Bioinformatics, 85(6), 1008–1023. doi: 10.1002/prot.25269
  • Zhang, Y., & Sagui, C. (2015). Secondary structure assignment for conformationally irregular peptides: Comparison between DSSP, STRIDE and KAKSI. Journal of Molecular Graphics and Modelling, 55, 72–84. doi: 10.1016/j.jmgm.2014.10.005
  • Zhou, Y., Zhang, N., Chen, W., Zhao, L., & Zhong, R. (2016). Underlying mechanisms of cyclic peptide inhibitors interrupting the interaction of CK2alpha/CK2beta: Comparative molecular dynamics simulation studies. Physical Chemistry Chemical Physics, 18(13), 9202–9210. doi: 10.1039/C5CP06276D

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.