363
Views
9
CrossRef citations to date
0
Altmetric
Research Articles

Modulation of p53 N-terminal transactivation domain 2 conformation ensemble and kinetics by phosphorylation

ORCID Icon, ORCID Icon, ORCID Icon & ORCID Icon
Pages 2613-2623 | Received 10 Jun 2019, Accepted 22 Jun 2019, Published online: 08 Jul 2019

References

  • Andrew, C. D., Warwicker, J., Jones, G. R., & Doig, A. J. (2002). Effect of phosphorylation on alpha-helix stability as a function of position. Biochemistry, 41(6), 1897–1905. doi:10.1021/bi0113216
  • Bah, A., & Forman-Kay, J. D. (2016). Modulation of intrinsically disordered protein function by post-translational modifications. Journal of Biological Chemistry, 291(13), 6696–6705. doi:10.1074/jbc.R115.695056
  • Bah, A., Vernon, R. M., Siddiqui, Z., Krzeminski, M., Muhandiram, R., Zhao, C., … Forman-Kay, J. D. (2015). Folding of an intrinsically disordered protein by phosphorylation as a regulatory switch. Nature, 519(7541), 106–109. doi:10.1038/nature13999
  • Beauchamp, K. A., Bowman, G. R., Lane, T. J., Maibaum, L., Haque, I. S., & Pande, V. S. (2011). MSMBuilder2: Modeling conformational dynamics at the picosecond to millisecond scale. Journal of Chemical Theory and Computation, 7(10), 3412–3419. doi:10.1021/ct200463m
  • Bhowmick, A., Brookes, D. H., Yost, S. R., Dyson, H. J., Forman-Kay, J. D., Gunter, D., … Head-Gordon, T. (2016). Finding our way in the dark proteome. Journal of the American Chemical Society, 138(31), 9730–9742. doi:10.1021/jacs.6b06543
  • Bueren-Calabuig, J. A., & Michel, J. (2016). Impact of Ser17 phosphorylation on the conformational dynamics of the oncoprotein MDM2. Biochemistry, 55(17), 2500–2509. doi:10.1021/acs.biochem.6b00127
  • Bulavin, D. V., Saito, S., Hollander, M. C., Sakaguchi, K., Anderson, C. W., Appella, E., & Fornace, A. J. Jr. (1999). Phosphorylation of human p53 by p38 kinase coordinates N-terminal phosphorylation and apoptosis in response to UV radiation. The EMBO Journal, 18(23), 6845–6854. doi:10.1093/emboj/18.23.6845
  • Bussi, G., Donadio, D., & Parrinello, M. (2007). Canonical sampling through velocity rescaling. Journal of Chemical Physics, 126(1), 014101. doi:10.1063/1.2408420
  • Cai, X., & Liu, X. (2008). Inhibition of Thr-55 phosphorylation restores p53 nuclear localization and sensitizes cancer cells to DNA damage. Proceedings of the National Academy of Sciences of the United States of America, 105(44), 16958–16963. doi:10.1073/pnas.0804608105
  • Case, D. A., Cheatham, T. E., Darden, T., Gohlke, H., Luo, R., Merz, K. M., … Woods, R. J. (2005). The Amber biomolecular simulation programs. Journal of Computational Chemistry, 26(16), 1668–1688. doi:10.1002/jcc.20290
  • Csizmok, V., & Forman-Kay, J. D. (2018). Complex regulatory mechanisms mediated by the interplay of multiple post-translational modifications. Current Opinion in Structural Biology, 48, 58–67. doi:10.1016/j.sbi.2017.10.013
  • Darden, T., York, D., & Pedersen, L. (1993). Particle mesh Ewald – An N.log(N) method for Ewald sums in large systems. Journal of Chemical Physics, 98(12), 10089–10092. doi:10.1063/1.464397
  • Daura, X., Gademann, K., Jaun, B., Seebach, D., van Gunsteren, W. F., & Mark, A. E. (1999). Peptide folding: When simulation meets experiment. Angewandte Chemie International Edition, 38(1–2), 236–240. doi:10.1002/(sici)1521-3773(19990115)38:1/2 < 236::Aid-anie236 > 3.3.Co;2-d
  • Di Lello, P., Jenkins, L. M. M., Jones, T. N., Nguyen, B. D., Hara, T., Yamaguchi, H., … Omichinski, J. G. (2006). Structure of the Tfb1/p53 complex: Insights into the interaction between the p62/Tfb1 subunit of TFIIH and the activation domain of p53. Molecular Cell, 22(6), 731–740. doi:10.1016/j.molcel.2006.05.007
  • Dignon, G. L., Zheng, W., Best, R. B., Kim, Y. C., & Mittal, J. (2018). Relation between single-molecule properties and phase behavior of intrinsically disordered proteins. Proceedings of the National Academy of Sciences, 115(40), 9929–9934. doi:10.1073/pnas.1804177115
  • Dyson, H. J., & Wright, P. E. (2002). Coupling of folding and binding for unstructured proteins. Current Opinion in Structural Biology, 12(1), 54–60. doi:10.1016/S0959-440X(02)00289-0
  • Garcia, A. E., Herce, H., & Paschek, D. (2006). Chapter 5 Simulations of temperature and pressure unfolding of peptides and proteins with replica exchange molecular dynamics. Annual Reports in Computational Chemistry, 2(1574–1400), 83–93. doi:10.1016/S1574-1400(06)02005-6
  • Harrigan, M. P., Sultan, M. M., Hernández, C. X., Husic, B. E., Eastman, P., Schwantes, C. R., … Pande, V. S. (2017). MSMBuilder: Statistical models for biomolecular dynamics. Biophysical Journal, 112(1), 10–15. doi:10.1016/j.bpj.2016.10.042
  • Hendus-Altenburger, R., Lambrughi, M., Terkelsen, T., Pedersen, S. F., Papaleo, E., Lindorff-Larsen, K., & Kragelund, B. B. (2017). A phosphorylation-motif for tuneable helix stabilisation in intrinsically disordered proteins – Lessons from the sodium proton exchanger 1 (NHE1). Cellular Signalling, 37, 40–51. doi:10.1016/j.cellsig.2017.05.015
  • Hess, B. (2008). P-LINCS: A parallel linear constraint solver for molecular simulation. Journal of Chemical Theory and Computation, 4(1), 116–122. doi:10.1021/ct700200b
  • Hess, B., Bekker, H., Berendsen, H. J. C., & Fraaije, J. (1997). LINCS: A linear constraint solver for molecular simulations. Journal of Computational Chemistry, 18(12), 1463–1472. doi:10.1002/(sici)1096-987x(199709)18:12 < 1463::Aid-jcc4 > 3.3.Co;2-l
  • Homeyer, N., Horn, A. H., Lanig, H., & Sticht, H. (2006). AMBER force-field parameters for phosphorylated amino acids in different protonation states: Phosphoserine, phosphothreonine, phosphotyrosine, and phosphohistidine. Journal of Molecular Modeling, 12(3), 281–289. doi:10.1007/s00894-005-0028-4
  • Huang, Y., & Liu, Z. (2009). Kinetic advantage of intrinsically disordered proteins in coupled folding-binding process: A critical assessment of the “fly-casting” mechanism. Journal of Molecular Biology, 393(5), 1143–1159. doi:10.1016/j.jmb.2009.09.010
  • Husic, B. E., & Pande, V. S. (2018). Markov state models: From an art to a science. Journal of the American Chemical Society, 140(7), 2386–2396. doi:10.1021/jacs.7b12191
  • Iakoucheva, L. M., Radivojac, P., Brown, C. J., O'Connor, T. R., Sikes, J. G., Obradovic, Z., & Dunker, A. K. (2004). The importance of intrinsic disorder for protein phosphorylation. Nucleic Acids Research, 32(3), 1037. doi:10.1093/nar/gkh253
  • Jenkins, L. M., Durell, S. R., Mazur, S. J., & Appella, E. (2012). p53 N-terminal phosphorylation: A defining layer of complex regulation. Carcinogenesis, 33(8), 1441–1449. doi:10.1093/carcin/bgs145
  • Jiang, Z. G., & McKnight, C. J. (2006). A phosphorylation-induced conformation change in dematin headpiece. Structure, 14(2), 379–387. doi:10.1016/j.str.2005.11.007
  • Joerger, A. C., & Fersht, A. R. (2008). Structural biology of the tumor suppressor p53. Annual Review of Biochemistry, 77(1), 557–582. doi:10.1146/annurev.biochem.77.060806.091238
  • Jorgensen, W. L., Chandrasekhar, J., Madura, J. D., Impey, R. W., & Klein, M. L. (1983). Comparison of simple potential functions for simulating liquid water. Journal of Chemical Physics, 79(2), 926–935. doi:10.1063/1.445869
  • Kabsch, W., & Sander, C. (1983). Dictionary of protein secondary structure: Pattern recognition of hydrogen-bonded and geometrical features. Biopolymers, 22(12), 2577–2637. doi:10.1002/bip.360221211
  • Kohn, J. E., Millett, I. S., Jacob, J., Zagrovic, B., Dillon, T. M., Cingel, N., … Plaxco, K. W. (2004). Random-coil behavior and the dimensions of chemically unfolded proteins. Proceedings of the National Academy of Sciences of the United States of America, 101(34), 12491–12496. doi:10.1073/pnas.0403643101
  • Krois, A. S., Ferreon, J. C., Martinez-Yamout, M. A., Dyson, H. J., & Wright, P. E. (2016). Recognition of the disordered p53 transactivation domain by the transcriptional adapter zinc finger domains of CREB-binding protein. Proceedings of the National Academy of Sciences of the United States of America, 113(13), E1853–E1862. doi:10.1073/pnas.1602487113
  • Kumari, R., Kumar, R., & Lynn, A. (2014). g_mmpbsa – A GROMACS tool for high-throughput MM-PBSA calculations. Journal of Chemical Information and Modeling, 54(7), 1951–1962. doi:10.1021/ci500020m
  • Kussie, P. H., Gorina, S., Marechal, V., Elenbaas, B., Moreau, J., Levine, A. J., & Pavletich, N. P. (1996). Structure of the MDM2 oncoprotein bound to the p53 tumor suppressor transactivation domain. Science, 274(5289), 948–953. doi:10.1126/science.274.5289.948
  • Lee, H., Mok, K. H., Muhandiram, R., Park, K.-H., Suk, J.-E., Kim, D.-H., … Han, K.-H. (2000). Local structural elements in the mostly unstructured transcriptional activation domain of human p53. Journal of Biological Chemistry, 275(38), 29426–29432. doi:10.1074/jbc.M003107200
  • Li, H. H., Li, A. G., Sheppard, H. M., & Liu, X. (2004). Phosphorylation on Thr-55 by TAF1 mediates degradation of p53: A role for TAF1 in cell G1 progression. Molecular Cell, 13(6), 867–878. doi:10.1016/S1097-2765(04)00123-6
  • Lindorff-Larsen, K., Piana, S., Palmo, K., Maragakis, P., Klepeis, J. L., Dror, R. O., & Shaw, D. E. (2010). Improved side-chain torsion potentials for the Amber ff99SB protein force field. Proteins: Structure, Function, and Bioinformatics, 78(8), 1950–1958. doi:10.1002/prot.22711
  • Liu, Z., & Huang, Y. (2014). Advantages of proteins being disordered. Protein Science, 23(5), 539–550. doi:10.1002/pro.2443
  • Marsh, J. A., & Forman-Kay, J. D. (2010). Sequence determinants of compaction in intrinsically disordered proteins. Biophysical Journal, 98(10), 2383–2390. doi:10.1016/j.bpj.2010.02.006
  • Martin, E. W., Holehouse, A. S., Grace, C. R., Hughes, A., Pappu, R. V., & Mittag, T. (2016). Sequence determinants of the conformational properties of an intrinsically disordered protein prior to and upon multisite phosphorylation. Journal of the American Chemical Society, 138(47), 15323–15335. doi:10.1021/jacs.6b10272
  • McGibbon, R. T., & Pande, V. S. (2015). Variational cross-validation of slow dynamical modes in molecular kinetics. Journal of Chemical Physics, 142(12), 124105. doi:10.1063/1.4916292
  • Miller Jenkins, L. M., Feng, H., Durell, S. R., Tagad, H. D., Mazur, S. J., Tropea, J. E., … Appella, E. (2015). Characterization of the p300 Taz2–p53 TAD2 complex and comparison with the p300 Taz2–p53 TAD1 complex. Biochemistry, 54(11), 2001–2010. doi:10.1021/acs.biochem.5b00044
  • Neale, C., Pomes, R., & Garcia, A. E. (2016). Peptide bond isomerization in high-temperature simulations. Journal of Chemical Theory and Computation, 12(4), 1989–1999. doi:10.1021/acs.jctc.5b01022
  • Nelson, M. L., Kang, H. S., Lee, G. M., Blaszczak, A. G., Lau, D. K., McIntosh, L. P., & Graves, B. J. (2010). Ras signaling requires dynamic properties of Ets1 for phosphorylation-enhanced binding to coactivator CBP. Proceedings of the National Academy of Sciences of the United States of America, 107(22), 10026–10031. doi:10.1073/pnas.0915137107
  • Oda, K., Arakawa, H., Tanaka, T., Matsuda, K., Tanikawa, C., Mori, T., … Taya, Y. (2000). p53AIP1, a potential mediator of p53-dependent apoptosis, and its regulation by Ser-46-phosphorylated p53. Cell, 102(6), 849–862. doi:10.1016/S0092-8674(00)00073-8
  • Okuda, M., & Nishimura, Y. (2014). Extended string binding mode of the phosphorylated transactivation domain of tumor suppressor p53. Journal of the American Chemical Society, 136(40), 14143–14152. doi:10.1021/ja506351f
  • Okuda, M., & Nishimura, Y. (2015). Real-time and simultaneous monitoring of the phosphorylation and enhanced interaction of p53 and XPC acidic domains with the TFIIH p62 subunit. Oncogenesis, 4(6), e150. doi:10.1038/oncsis.2015.13
  • Ouyang, Y., Zhao, L., & Zhang, Z. (2018). Characterization of the structural ensembles of p53 TAD2 by molecular dynamics simulations with different force fields. Physical Chemistry Chemical Physics, 20(13), 8676–8684. doi:10.1039/C8CP00067K
  • Parrinello, M., & Rahman, A. (1981). Polymorphic transitions in single-crystals – A new molecular-dynamics method. Journal of Applied Physics, 52(12), 7182–7190. doi:10.1063/1.328693
  • Perez-Hernandez, G., Paul, F., Giorgino, T., De Fabritiis, G., & Noe, F. (2013). Identification of slow molecular order parameters for Markov model construction. Journal of Chemical Physics, 139(1), 015102. doi:10.1063/1.4811489
  • Prinz, J.-H., Wu, H., Sarich, M., Keller, B., Senne, M., Held, M., … Noé, F. (2011). Markov models of molecular kinetics: Generation and validation. Journal of Chemical Physics, 134(17), 174105. doi:10.1063/1.3565032
  • Pullen, K., Rajagopal, P., Klevit, R. E., Branchini, B. R., Reizer, J., Saier, M. H., … Huffine, M. E. (1995). Phosphorylation of serine-46 in HPr, a key regulatory protein in bacteria, results in stabilization of its solution structure. Protein Science, 4(12), 2478–2486. doi:10.1002/pro.5560041204
  • Raj, N., & Attardi, L. D. (2017). The transactivation domains of the p53 protein. Cold Spring Harbor Perspectives in Medicine, 7(1), a026047. doi:10.1101/cshperspect
  • Roeblitz, S., & Weber, M. (2013). Fuzzy spectral clustering by PCCA plus: Application to Markov state models and data classification. Advances in Data Analysis and Classification, 7(2), 147–179. doi:10.1007/s11634-013-0134-6
  • Saglam, A. S., Wang, D. W., Zwier, M. C., & Chong, L. T. (2017). Flexibility vs preorganization: direct comparison of binding kinetics for a disordered peptide and its exact preorganized analogues. The Journal of Physical Chemistry B, 121(43), 10046–10054. doi:10.1021/acs.jpcb.7b08486
  • Scherer, M. K., Trendelkamp-Schroer, B., Paul, F., Pérez-Hernández, G., Hoffmann, M., Plattner, N., … Noé, F. (2015). PyEMMA 2: A software package for estimation, validation, and analysis of markov models. Journal of Chemical Theory and Computation, 11(11), 5525–5542. doi:10.1021/acs.jctc.5b00743
  • Schwantes, C. R., & Pande, V. S. (2013). Improvements in Markov state model construction reveal many non-native interactions in the folding of NTL9. Journal of Chemical Theory and Computation, 9(4), 2000–2009. doi:10.1021/ct300878a
  • Singhal, N., Snow, C. D., & Pande, V. S. (2004). Using path sampling to build better Markovian state models: Predicting the folding rate and mechanism of a tryptophan zipper beta hairpin. The Journal of Chemical Physics, 121(1), 415–425. doi:10.1063/1.1738647
  • Smart, J. L., & McCammon, J. A. (1999). Phosphorylation stabilizes the N-termini of alpha-helices. Biopolymers, 49(3), 225–233. doi:10.1002/(sici)1097-0282(199903)49:3 < 225::Aid-bip4 > 3.0.Co;2-b
  • Stanley, N., Esteban-Martin, S., & De Fabritiis, G. (2014). Kinetic modulation of a disordered protein domain by phosphorylation. Nature Communications, 5(1), 5272. doi:10.1038/ncomms6272
  • Thut, C. J., Goodrich, J. A., & Tjian, R. (1997). Repression of p53-mediated transcription by MDM2: A dual mechanism. Genes & Development, 11(15), 1974–1986. doi:10.1101/gad.11.15.1974
  • Wells, M., Tidow, H., Rutherford, T. J., Markwick, P., Jensen, M. R., Mylonas, E., … Fersht, A. R. (2008). Structure of tumor suppressor p53 and its intrinsically disordered N-terminal transactivation domain. Proceedings of the National Academy of Sciences of the United States of America, 105(15), 5762–5767. doi:10.1073/pnas.0801353105
  • Wright, P. E., & Dyson, H. J. (2009). Linking folding and binding. Current Opinion in Structural Biology, 19(1), 31–38. doi:10.1016/j.sbi.2008.12.003
  • Xie, H., Vucetic, S., Iakoucheva, L. M., Oldfield, C. J., Dunker, A. K., Obradovic, Z., & Uversky, V. N. (2007). Functional anthology of intrinsic disorder. 3. Ligands, post-translational modifications, and diseases associated with intrinsically disordered proteins. Journal of Proteome Research, 6(5), 1917–1932. doi:10.1021/pr060394e
  • Yadahalli, S., Neira, J. L., Johnson, C. M., Tan, Y. S., Rowling, P. J. E., Chattopadhyay, A., … Itzhaki, L. S. (2019). Kinetic and thermodynamic effects of phosphorylation on p53 binding to MDM2. Scientific Reports, 9(1), 693. doi:10.1038/s41598-018-36589-5
  • Yang, B. S., Hauser, C. A., Henkel, G., Colman, M. S., Van Beveren, C., Stacey, K. J., … Ostrowski, M. C. (1996). Ras-mediated phosphorylation of a conserved threonine residue enhances the transactivation activities of c-Ets1 and c-Ets2. Molecular and Cellular Biology, 16(2), 538–547. doi:10.1128/MCB.16.2.538
  • Zeng, J., Jiang, F., & Wu, Y. D. (2017). Mechanism of phosphorylation-induced folding of 4E-BP2 revealed by molecular dynamics simulations. Journal of Chemical Theory and Computation, 13(1), 320–328. doi:10.1021/acs.jctc.6b00848
  • Zhou, G., Pantelopulos, G. A., Mukherjee, S., & Voelz, V. A. (2017). Bridging microscopic and macroscopic mechanisms of p53-MDM2 binding with kinetic network models. Biophysical Journal, 113(4), 785–793. doi:10.1016/j.bpj.2017.07.009
  • Zor, T., Mayr, B. M., Dyson, H. J., Montminy, M. R., & Wright, P. E. (2002). Roles of phosphorylation and helix propensity in the binding of the KIX domain of CREB-binding protein by constitutive (c-Myb) and inducible (CREB) activators. Journal of Biological Chemistry, 277(44), 42241. doi:10.1074/jbc.M207361200

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.