178
Views
10
CrossRef citations to date
0
Altmetric
Research Articles

Biomolecular interaction of a platelet aggregation inhibitor, 3,4-methylenedioxy-β-nitrostyrene with human serum albumin: multi-spectral and computational characterization

, , , &
Pages 2693-2703 | Received 23 May 2019, Accepted 27 Jun 2019, Published online: 15 Jul 2019

References

  • Abou-Zied, O. K., & Al-Shihi, O. I. (2008). Characterization of subdomain IIA binding site of human serum albumin in its native, unfolded, and refolded states using small molecular probes. Journal of the American Chemical Society, 130(32), 10793–10801. doi:10.1021/ja8031289
  • Aki, H., & Yamamoto, M. (1994). Thermodynamic characterization of drug binding to human serum albumin by isothermal titration microcalorimetry. Journal of Pharmaceutical Sciences, 83(12), 1712–1716. doi:10.1002/jps.2600831213
  • Ayranci, E., & Duman, O. (2004). Binding of lead ion to bovine serum albumin studied by ion selective electrode. Protein & Peptide Letters, 11(4), 331–337. doi:10.2174/0929866043406814
  • Ayranci, E., & Duman, O. (2004). Binding of fluoride, bromide and iodide to bovine serum albumin, studied with ion-selective electrodes. Food Chemistry, 84(4), 539–543. doi:10.1016/S0308-8146(03)00276-0
  • Barreca, D., Lagana, G., Bruno, G., Magazu, S., & Bellocco, E. (2013). Diosmin binding to human serum albumin and its preventive action against degradation due to oxidative injuries. Biochimie, 95(11), 2042–2049. doi:10.1016/j.biochi.2013.07.014
  • Bozoglan, B. K., Tunc, S., & Duman, O. (2014). Investigation of neohesperidin dihydrochalcone binding to human serum albumin by spectroscopic methods. Journal of Luminescence, 155, 198–204. doi:10.1016/j.jlumin.2014.06.032
  • Chen, Y. H., Yang, J. T., & Martinez, M. (1972). Determination of the secondary structure of proteins by circular dichroism and optical rotatory dispersion. Biochemistry, 11(22), 4120–4131. doi:10.1021/bi00772a015
  • Chen, Y., & Barkley, M. D. (1998). Toward understanding tryptophan fluorescence in proteins. Biochemistry, 37(28), 9976–9982. doi:10.1021/bi980274n
  • Dufour, C., & Dangles, O. (2005). Flavonoid–serum albumin complexation: Determination of binding constants and binding sites by fluorescence spectroscopy. Biochimica et Biophysica Acta—General Subjects, 1721(1-3), 164–173. doi:10.1016/j.bbagen.2004.10.013
  • Duman, O., Tunç, S., & Kancı Bozoğlan, B. (2013). Characterization of the binding of metoprolol tartrate and guaifenesin drugs to human serum albumin and human hemoglobin proteins by fluorescence and circular dichroism spectroscopy. Journal of Fluorescence, 23(4), 659–669. doi:10.1007/s10895-013-1177-y
  • Feroz, S. R., Mohamad, S. B., Bakri, Z. S. D., Malek, S. N. A., & Tayyab, S. (2013). Probing the interaction of a therapeutic flavonoid, pinostrobin with human serum albumin: Multiplespectroscopic and molecular modeling investigations. PLoS ONE, 8(10), e76067. doi:10.1371/journal.pone.0076067
  • Feroz, S. R., Mohamad, S. B., Lee, G. S., Malek, S. N. A., & Tayyab, S. (2015). Supramolecular interaction of 6-shogaol, a therapeutic agent of Zingiber officinale with human serum albumin as elucidated by spectroscopic, calorimetric and molecular docking methods. Phytomedicine, 22(6), 621–630. doi:10.1016/j.phymed.2015.03.016
  • Guercia, E., Forzato, C., Navarini, L., & Berti, F. (2016). Interaction of coffee compounds with serum albumins. Part II: Diterpenes. Food Chemistry, 199, 502–508. doi:10.1016/j.foodchem.2015.12.051
  • Hanwell, M. D., Curtis, D. E., Lonie, D. C., Vandermeersch, T., Zurek, E., & Hutchison, G. R. (2012). Avogadro: An advanced semantic chemical editor, visualization, and analysis platform. Journal of Cheminformatics, 4(1), 1–17. doi:10.1186/1758-2946-4-17
  • Hsieh, P. W., Chang, Y. T., Chuang, W. Y., Shih, H. C., Chiang, S. Z., & Wu, C. C. (2010). The synthesis and biologic evaluation of anti-platelet and cytotoxic β-nitrostyrenes. Bioorganic & Medicinal Chemistry, 18, 7621–7627. doi:10.1016/j.bmc.2010.08.039
  • Il'ichev, Y. V., Perry, J. L., & Simon, J. D. (2002). Interaction of ochratoxin A with human serum albumin. A common binding site of ochratoxin A and warfarin in subdomain IIA. The Journal of Physical Chemistry B, 106, 460–465. doi:10.1021/jp012315m
  • Kabir, M. Z., Tee, W. V., Mohamad, S. B., Alias, Z., & Tayyab, S. (2016). Interaction of an anticancer drug, gefitinib with human serum albumin: Insights from fluorescence spectroscopy and computational modeling analysis. RSC Advances, 6, (94), 91756–91767. doi:10.1039/C6RA12019A
  • Kabir, M. Z., Ghani, H., Mohamad, S. B., Alias, Z., & Tayyab, S. (2018a). Interactive association between RhoA transcriptional signaling inhibitor, CCG1423 and human serum albumin: Biophysical and in silico studies. Journal of Biomolecular Structure and Dynamics, 36(10), 2495–2507. doi:10.1080/07391102.2017.1360207
  • Kabir, M. Z., Hamzah, N. A. B., Ghani, H., Mohamad, S. B., Alias, Z., & Tayyab, S. (2018b). Biophysical and computational characterization of vandetanib–lysozyme interaction. Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy, 189, 485–494. doi:10.1016/j.saa.2017.08.051
  • Kelly, S. M., Jess, T. J., & Price, N. C. (2005). How to study proteins by circular dichroism. Biochimica et Biophysica Acta, 1751(2), 119–139. doi:10.1016/j.bbapap.2005.06.005
  • Khalili, L., & Dehghan, G. (2019). A comparative spectroscopic, surface plasmon resonance, atomic force microscopy and molecular docking studies on the interaction of plant derived conferone with serum albumins. Journal of Luminescence, 211, 193–202. doi:10.1016/j.jlumin.2019.03.048
  • Kosa, T., Maruyama, T., & Otagiri, M. (1997). Species differences of serum albumins: I. Drug binding sites. Pharmaceutical Research, 14(11), 1607–1612.
  • Kragh-Hansen, U. (1985). Relations between high-affinity binding sites of markers for binding regions on human serum albumin. The Biochemical Journal, 225(3), 629–638. doi:10.1042/bj2250629
  • Kragh-Hansen, U., Chuang, V. T. G., & Otagiri, M. (2002). Practical aspects of the ligand-binding and enzymatic properties of human serum albumin. Biological & Pharmaceutical Bulletin, 25(6), 695–704. doi:10.1248/bpb.25.695
  • Lakowicz, J. R. (2006). Principles of Fluorescence Spectroscopy. Third edn, Springer, New York.
  • Laskowski, R. A., & Swindells, M. B. (2011). LigPlot+: Multiple ligand–protein interaction diagrams for drug discovery. Journal of Chemical Information and Modeling, 51(10), 2778–2786. doi:10.1021/ci200227u
  • Li, Y., Chen, C., Zhang, C., Duan, J., Yao, H., & Wei, Q. (2017). Probing the binding interaction of AKR with human serum albumin by multiple fluorescence spectroscopy and molecular modeling. Journal of Biomolecular Structure and Dynamics, 35(6), 1189–1199. doi:10.1080/07391102.2016.1174622
  • Li, Y., Guo, Q., Yan, Y., Chen, T., Du, C., & Du, H. (2019). Different effects of Forsythia suspensa metabolites on bovine serum albumin (BSA). Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy, 214, 309–319. doi:10.1016/j.saa.2019.02.076
  • Lin, J., Liu, Y., Chen, M., Huang, H., & Song, L. (2014). Investigation on the binding activities of citalopram with human and bovine serum albumins. Journal of Luminescence, 146, 114–122. doi:10.1016/j.jlumin.2013.09.054
  • Lu, Z. X., Cui, T., & Shi, Q. L. (1987). Applications of circular dichroism and optical rotatory dispersion in molecular biology (1st ed.). Beijing: Science Press.
  • Makarska-Bialokoz, M. (2017). Investigation of the binding affinity in vitamin B12-bovine serum albumin system using various spectroscopic methods. Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy, 184, 262–269. doi:10.1016/j.saa.2017.05.014
  • Makarska-Bialokoz, M. (2018). Interactions of hemin with bovine serum albumin and human hemoglobin: A fluorescence quenching study. Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy, 193, 23–32. doi:10.1016/j.saa.2017.11.063
  • Makarska-Bialokoz, M., & Lipke, A. (2019). Study of the binding interactions between uric acid and bovine serum albumin using multiple spectroscopic techniques. Journal of Molecular Liquids, 276, 595–604. doi:10.1016/j.molliq.2018.12.026
  • Painter, L., Harding, M. M., & Beeby, P. J. (1998). Synthesis and interaction with human serum albumin of the first 3,18-disubstituted derivative of bilirubin. Journal of the Chemical Society, Perkin Transactions 1 , 18(1), 3041–3044. doi:10.1039/a803429j
  • Peters, T. (1996). All about albumin: Biochemistry, genetics, and medical applications. San Diego, CA: Academic Press.
  • Pettersen, E. F., Goddard, T. D., Huang, C. C., Couch, G. S., Greenblatt, D. M., Meng, E. C., & Ferrin, T. E. (2004). UCSF Chimera - A visualization system for exploratory research and analysis. Journal of Computational Chemistry, 25(13), 1605–1612. doi:10.1002/jcc.20084
  • Ross, P. D., & Subramanian, S. (1981). Thermodynamics of protein association reactions: Forces contributing to stability. Biochemistry, 20(11), 3096–3102. doi:10.1021/bi00514a017
  • Sancataldo, G., Vetri, V., Fodera, V., Cara, G. D., Militello, V., & Leone, M. (2014). Oxidation enhances human serum albumin thermal stability and changes the routes of amyloid fibril formation. PLoS ONE, 9(1), e84552. doi:10.1371/journal.pone.0084552
  • Shi, S., Liu, J., Joshi, S. B., Krasnoperov, V., Gill, P., Middaugh, C. R., & Volkin, D. B. (2012). Biophysical characterization and stabilization of the recombinant albumin fusion protein sEphB4–HSA. Journal of Pharmceutical Sciences, 101(6), 1969–1984. doi:10.1002/jps.23096
  • Sudlow, G., Birkett, D. J., & Wade, D. N. (1975). The characterization of two specific drug binding sites on human serum albumin. Molecular Pharmacology, 11, 824–832.
  • Tayyab, S., Francis, J. A., Kabir, M. Z., Ghani, H., & Mohamad, S. B. (2019). Probing the interaction of 2,4-dichlorophenoxyacetic acid with human serum albumin as studied by experimental and computational approaches. Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy, 207, 284–293. doi:10.1016/j.saa.2018.09.033
  • Tian, J., Liu, J., He, W., Hu, Z., Yao, X., & Chen, X. (2004). Probing the binding of scutellarin to human serum albumin by circular dichroism, fluorescence spectroscopy, FTIR, and molecular modeling method. Biomacromolecules, 5(5), 1956–1961. doi:10.1021/bm049668m
  • Tunç, S., Duman, O., & Bozoğlan, B. K. (2013). Studies on the interactions of chloroquine diphosphate and phenelzine sulfate drugs with human serum albumin and human hemoglobin proteins by spectroscopic techniques. Journal of Luminescence, 140, 87–94. doi:10.1016/j.jlumin.2013.03.015
  • Tunç, S., Cetinkaya, A., & Duman, O. (2013). Spectroscopic investigations of the interactions of tramadol hydrochloride and 5-azacytidine drugs with human serum albumin and human hemoglobin proteins. Journal of Photochemistry and Photobiology B: Biology, 120, 59–65. doi:10.1016/j.jphotobiol.2013.01.011
  • Tunç, S., Duman, O., Soylu, İ., & Bozoğlan, B. K. (2014). Study on the bindings of dichlorprop and diquat dibromide herbicides to human serum albumin by spectroscopic methods. Journal of Hazardous Materials, 273, 36–43. doi:10.1016/j.jhazmat.2014.03.022
  • Twine, S. M., Gore, M. G., Morton, P., Fish, B. C., Lee, A. G., & East, J. M. (2003). Mechanism of binding of warfarin enantiomers to recombinant domains of human albumin. Archives of Biochemistry and Biophysics, 414(1), 83–90. doi:10.1016/S0003-9861(03)00173-5
  • Wang, W. Y., Hsieh, P. W., Wu, Y. C., & Wu, C. C. (2007). Synthesis and pharmacological evaluation of novel β-nitrostyrene derivatives as tyrosine kinase inhibitors with potent antiplatelet activity. Biochemical Pharmacology, 74(4), 601–611. doi:10.1016/j.bcp.2007.06.001
  • Ware, W. R. (1962). Oxygen quenching of fluorescence in solution: An experimental study of the diffusion process. The Journal of Physical Chemistry, 66(3), 455–458. doi:10.1021/j100809a020
  • Yeggoni, D. P., Rachamallu, A., Kallubai, M., & Subramanyam, R. (2015). Cytotoxicity and comparative binding mechanism of piperine with human serum albumin and α-1-acid glycoprotein. Journal of Biomolecular Structure and Dynamics, 33, (6), 1336–1351. doi:10.1080/07391102.2014.947326
  • Yip, J., Shen, Y., Berndt, M. C., & Andrews, R. K. (2005). Primary platelet adhesion receptors. IUBMB Life, 57(2), 103–108. doi:10.1080/15216540500078962
  • Yu, M., Ding, Z., Jiang, F., Ding, X., Sun, J., Chen, S., & Lv, G. (2011). Analysis of binding interaction between pegylated puerarin and bovine serum albumin by spectroscopic methods and dynamic light scattering. Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy, 83(1), 453–460. doi:10.1016/j.saa.2011.08.065
  • Zhang, G., Zhao, N., & Wang, L. (2011). Probing the binding of vitexin to human serum albumin by multispectroscopic techniques. Journal of Luminescence, 131(5), 880–887. doi:10.1016/j.jlumin.2010.12.018
  • Zhang, J., Chen, L., Liu, D., Zhu, Y., & Zhang, Y. (2018). Interactions of pyrene and/or 1-hydroxypyrene with bovine serum albumin based on EEM-PARAFAC combined with molecular docking. Talanta, 186, 497–505. doi:10.1016/j.talanta.2018.04.066

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.