95
Views
5
CrossRef citations to date
0
Altmetric
Research Articles

Energetically optimized pharmacophore modeling to identify dual negative allosteric modulators against group I mGluRs in neurodegenerative diseases

&
Pages 2326-2337 | Received 09 May 2019, Accepted 04 Jun 2019, Published online: 08 Aug 2019

References

  • Barcellos, M. P., Santos, C. B. R., Federico, L. B., Almeida, P. F., da Silva, C. H. T. P., & Taft, C. A. (2018). Pharmacophore and structure-based drug design, molecular dynamics and admet/tox studies to design novel potential pad4 inhibitors. Journal of Biomolecular Structure and Dynamics, 37(4), 966–981. doi:10.1080/07391102.2018.1444511
  • Bartuzi, D., Kaczor, A. A., & Matosiuk, D. (2018). Opportunities and challenges in the discovery of allosteric modulators of GPCRs. Methods in Molecular Biology, 1705, 297–319. doi:10.1007/978-1-4939-7465-8_13
  • Baskys, A., & Malenka, R. C. (1991). Agonists at metabotropic glutamate receptors presynaptically inhibit EPSCs in neonatal rat hippocampus. The Journal of Physiology, 444, 687–701. doi:10.1113/jphysiol.2002.032961
  • Boer, K., Encha-Razavi, F., Sinico, M., & Aronica, E. (2010). Differential distribution of group I metabotropic glutamate receptors in developing human cortex. Brain Research, 1324, 24–33. doi:10.1016/j.brainres.2010.02.005
  • Conn, P. J., Kuduk, S. D., & Doller, D. (2012). Drug design strategies for GPCR allosteric modulators. Annual Reports in Medicinal Chemistry, 47, 441–457. doi:10.1016/B978-0-12-396492-2.00028-X
  • Dalton, J. A., Gómez-Santacana, X., Llebaria, A., & Giraldo, J. (2014). Computational analysis of negative and positive allosteric modulator binding and function in metabotropic glutamate receptor 5 (in)activation. Journal of Chemical Information and Modeling, 54(5), 1476–1487. doi:10.1021/ci500127c
  • Desmond. (2015). Version 4.1 New York, NY: Schrodinger, LLC.
  • Doré, A. S., Okrasa, K., Patel, J. C., Serrano-Vega, M., Bennett, K., Cooke, R. M., … Marshall, F. H. (2014). Structure of class C GPCR metabotropic glutamate receptor 5 transmembrane domain. Nature, 511(7511), 557–562. doi:10.1038/nature13396
  • Ece, A. (2019). Towards more effective acetylcholinesterase inhibitors: A comprehensive modelling study based on human acetylcholinesterase protein-drug complex. Journal of Biomolecular Structure and Dynamics, 1–8. doi:10.1080/07391102.2019.1583606
  • Eng, A. G., Kelver, D. A., Hedrick, T. P., & Swanson, G. T. (2016). Transduction of group I mGluR-mediated synaptic plasticity by ß-arrestin2 signalling. Nature Communications, 7(1), 13571. doi:10.1038/ncomms13571
  • Felts, A. S., Rodriguez, A. L., Morrison, R. D., Venable, D. F., Blobaum, A. L., Byers, F. W., … Emmitte, K. A. (2016). N-Alkylpyrido[1',2':1,5]pyrazolo-[4,3-d]pyrimidin-4-amines: A new series of negative allosteric modulators of mGlu1/5 with CNS exposure in rodents. Bioorganic & Medicinal Chemistry Letters, 26(8), 1894–1900. doi:10.1016/j.bmcl.2016.03.026
  • Feng, Z., Ma, S., Hu, G., & Xie, X. Q. (2015). Allosteric binding site and activation mechanism of class C G-protein coupled receptors: Metabotropic glutamate receptor family. The AAPS Journal, 17(3), 737–753. doi:10.1208/s12248-015-9742-8
  • Gao, Z. G., & Jacobson, K. A. (2013). Allosteric modulation and functional selectivity of G protein- coupled receptors. Drug Discovery Today: Technologies, 10(2), e237–43. doi:10.1016/j.ddtec.2012.08.004
  • Gee, C. E., Benquet, P., & Gerber, U. (2003). Group I metabotropic glutamate receptors activate a calcium-sensitive transient receptor potential-like conductance in rat hippocampus. The Journal of Physiology, 546(3), 655–664. doi:10.1113/jphysiol.2002.032961
  • Glide. (2015). version 6.3. New York, NY: Schrodinger, LLC.
  • Harpsøe, K., Isberg, V., Tehan, B. G., Weiss, D., Arsova, A., Marshall, F. H., …, Gloriam, D. E. (2015). Selective negative allosteric modulation of metabotropic glutamate receptors—A structural perspective of ligands and mutants. Scientific Reports, 5(1), 13869. doi:10.1038/srep13869
  • Hu, Y., Zhou, L., Zhu, X., Dai, D., Bao, Y., & Qiu, Y. (2019). Pharmacophore modeling, multiple docking, and molecular dynamics studies on Wee1 kinase inhibitors. Journal of Biomolecular Structure and Dynamics, 37(10), 2703–2715. doi:10.1080/07391102.2018.1495576
  • Hurevich, M., Talhami, A., Shalev, D. E., & Gilon, C. (2014). Allosteric inhibition of g-protein coupled receptor oligomerization: Strategies and challenges for drug development. Current Topics in Medicinal Chemistry, 14(15), 1842–1863. doi:10.2174/1568026614666140901130843
  • Induced Fit Docking. (2015). New York: Schrodinger, LLC.
  • Kuang, D., Yao, Y., Maclean, D., Wang, M., Hampson, D. R., & Chang, B. S. (2006). Ancestral reconstruction of the ligand-binding pocket of Family C G protein-coupled receptors. Proceedings of the National Academy of Sciences of the United States of America, 103(38), 14050–14055. doi:10.1073/pnas.0604717103
  • Lu, S., & Zhang, J. (2018). Small molecule allosteric modulators of G-protein-coupled receptors: Drug-target interactions. Journal of Medicinal Chemistry, 10, 24–45. doi:10.1021/acs.jmedchem.7b01844
  • Ménard, C., & Quirion, R. (2012). Group 1 metabotropic glutamate receptor function and its regulation of learning and memory in the aging brain. Frontiers in Pharmacology, 3, 182. doi:10.3389/fphar.2012.00182
  • Niswender, C. M., & Conn, P. J. (2010). Metabotropic glutamate receptors: Physiology, pharmacology, and disease. Annual Review of Pharmacology and Toxicology, 50(1), 295–322. doi:10.1146/annurev.pharmtox.011008.145533
  • Niswender, C. M., Jones, C. K., & Conn, P. J. (2005). New therapeutic frontiers for metabotropic glutamate receptors. Current Topics in Medicinal Chemistry, 5(9), 847–857. 10.2174/1568026054750254
  • Prabhu, S. V., Tiwari, K., Suryanarayanan, V., Dubey, V. K., & Singh, S. K. (2016). Exploration of new and potent lead molecules against CAAX prenyl protease I of Leishmania donovani through pharmacophore based virtual screening approach. Combinatorial Chemistry & High Throughput Screening, 20, 255–271. doi:10.2174/1386207320666170120164515
  • Pradiba, D., Aarthy, M., Shunmugapriya, V., Singh, S. K., & Vasanthi, M. (2017). Structural insights into the binding mode of flavonols with the active site of matrix metalloproteinase-9 through molecular docking and molecular dynamic simulations studies. Journal of Biomolecular Structure and Dynamics, 36, 3718–3739. doi:10.1080/07391102.2017.1397058
  • Prime. (2015). Version 3.9. New York: Schrodinger, LLC.
  • Protein Preparation Wizard. (2015). New York: Schrodinger, LLC.
  • QikProp. (2015). Version 4.3. New York: Schrodinger, LLC.
  • Rajamanikandan, S., Jeyakanthan, J., & Srinivasan, P. (2017). Molecular docking, molecular dynamics simulations, computational screening to design quorum sensing inhibitors targeting LuxP of Vibrio harveyi and its biological evaluation. Applied Biochemistry and Biotechnology, 181(1), 192–218. doi:10.1007/s12010-016-2207-4
  • Rella, M., Rushworth, C. A., Guy, J. L., Turner, A. J., Langer, T., & Jackson, R. M. (2006). Structure-based pharmacophore design and virtual screening for novel angiotensin converting enzyme 2 inhibitors. Journal of Chemical Information and Modeling, 46(2), 708–716. doi:10.1021/ci0503614
  • Ribeiro, F. M., Vieira, L. B., Pires, R. G., Olmo, R. P., & Ferguson, S. S. (2017). Metabotropic glutamate receptors and neurodegenerative diseases. Pharmacological Research, 115, 179–191. doi:10.1016/j.phrs.2016.11.013
  • Ross, J. R., Ramakrishnan, H., Porter, B. E., & Robinson, M. B. (2011). Group I mGluR-regulated translation of the neuronal glutamate transporter, excitatory amino acid carrier 1. Journal of Neurochemistry, 117(5), 812–823. doi:10.1111/j.1471-4159.2011.07233.x
  • Saxena, S., Durgam, L., & Guruprasad, L. (2018). Multiple e-pharmacophore modelling pooled with high-throughput virtual screening, docking and molecular dynamics simulations to discover potential inhibitors of Plasmodium falciparum lactate dehydrogenase (PfLDH). Journal of Biomolecular Structure and Dynamics, 37(7), 1783–1799. doi:10.1080/07391102.2018.1471417
  • Schoepp, D. D. (1994). Novel functions for subtypes of metabotropic glutamate receptors. Neurochemistry International, 24(5), 439–449. doi:10.1016/0197-0186(94)90092-2
  • Singh, S., Vijaya Prabhu, S., Suryanarayanan, V., Bhardwaj, R., Singh, S. K., & Dubey, V. K. (2016). Molecular docking and structure-based virtual screening studies of potential drug target, CAAX prenyl proteases, of Leishmania donovani. Journal of Biomolecular Structure and Dynamics, 34(11), 2367–2386. doi:10.1080/07391102.2015
  • Suryanarayanan, V., & Singh, S. K. (2018). Unravelling novel congeners from acetyllysine mimicking ligand targeting a lysine acetyltransferase PCAF bromodomain. Journal of Biomolecular Structure and Dynamics, 36(16), 4303–4319. doi:10.1080/07391102.2017.1415820
  • Tripuraneni, N. S., & Azam, M. A. (2016). A combination of pharmacophore modeling, atom-based 3D-QSAR, molecular docking and molecular dynamics simulation studies on PDE4 enzyme inhibitors. Journal of Biomolecular Structure and Dynamics, 34(11), 2481–2492. doi:10.1080/07391102.2015.1119732
  • Wu, H., Wang, C., Gregory, K. J., Han, G. W., Cho, H. P., Xia, Y., … Stevens, R. C. (2014). Structure of a class C GPCR metabotropic glutamate receptor 1 bound to an allosteric modulator. Science, 344(6179), 58–64. doi:10.1126/science.1249489
  • Yang, F., Snyder, L. B., Balakrishnan, A., Brown, J. M., Sivarao, D. V., Easton, A., … Degnan, A. P. (2016). Discovery and preclinical evaluation of BMS-955829, a potent positive allosteric modulator of mGluR5. ACS Medicinal Chemistry Letters, 7(3), 289–293. doi:10.1021/acsmedchemlett.5b00450
  • Zimmerman, J. E., Chan, M. T., Lenz, O. T., Keenan, B. T., Maislin, G., & Pack, A. I. (2017). Glutamate is a wake-active neurotransmitter in Drosophila melanogaster. Sleep, 40(2), zsw046. doi:10.1093/sleep/zsw046

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.