186
Views
5
CrossRef citations to date
0
Altmetric
Research Articles

A profound computational study to prioritize the natural compound inhibitors against the P. falciparum orotidine-5-monophosphate decarboxylase enzyme

ORCID Icon, & ORCID Icon
Pages 2704-2716 | Received 23 Apr 2019, Accepted 01 Jul 2019, Published online: 22 Jul 2019

References

  • Athar, M., Lone, M. Y., Khedkar, V. M., & Jha, P. C. (2016). Pharmacophore model prediction, 3D-QSAR and molecular docking studies on vinyl sulfones targeting Nrf2-mediated gene transcription intended for anti-Parkinson drug design. Journal of Biomolecular Structure and Dynamics, 34(6), 1282–1297. doi:10.1080/07391102.2015.1077343
  • Bello, A. M., Konforte, D., Poduch, E., Furlonger, C., Wei, L., Liu, Y., … Kotra, L. P. (2009). Structure–activity relationships of orotidine-5′-monophosphate decarboxylase inhibitors as anticancer agents. Journal of Medicinal Chemistry, 52(6), 1648–1658. doi:10.1021/jm801224t
  • Bello, A. M., Poduch, E., Liu, Y., Wei, L., Crandall, I., Wang, X., … Kotra, L. P. (2008). Structure–activity relationships of C6-uridine derivatives targeting plasmodia orotidine monophosphate decarboxylase. Journal of Medicinal Chemistry, 51(3), 439–448. doi:10.1021/jm7010673
  • Berendsen, H. J., Postma, J. V., van Gunsteren, W. F., DiNola, A., & Haak, J. (1984). Molecular dynamics with coupling to an external bath. The Journal of Chemical Physics, 81(8), 3684–3690. doi:10.1063/1.448118
  • Bhardwaj, V., & Purohit, R. (2019). Computational investigation on effect of mutations in PCNA resulting in structural perturbations and inhibition of mismatch repair pathway. Journal of Biomolecular Structure and Dynamics, 1–19 (just-accepted). doi:10.1080/07391102.2019.1621210
  • Bietz, S., Urbaczek, S., Schulz, B., & Rarey, M. (2014). Protoss: A holistic approach to predict tautomers and protonation states in protein-ligand complexes. Journal of Cheminformatics, 6(1), 12. doi:10.1186/1758-2946-6-12
  • Böhm, H.-J. (1994). The development of a simple empirical scoring function to estimate the binding constant for a protein-ligand complex of known three-dimensional structure. Journal of Computer-Aided Molecular Design, 8(3), 243–256.
  • Brooks, B. R., Bruccoleri, R. E., Olafson, B. D., States, D. J., Swaminathan, S., & Karplus, M. (1983). CHARMM: A program for macromolecular energy, minimization, and dynamics calculations. Journal of Computational Chemistry, 4(2), 187–217. doi:10.1002/jcc.540040211
  • Christopherson, R. I., Lyons, S. D., & Wilson, P. K. (2002). Inhibitors of de novo nucleotide biosynthesis as drugs. Accounts of Chemical Research, 35(11), 961–971. doi:10.1021/ar0000509
  • da Silva, A. W. S., & Vranken, W. F. (2012). ACPYPE-Antechamber python parser interface. BMC Research Notes, 5(1), 367. doi:10.1186/1756-0500-5-367
  • Discovery Studio Version 4.0. (n.d.) Accelrys Software, Inc., San Diego, CA. Retrieved from www.accelrys.com/products/collaborativescience/biovia-discovery-studio/
  • Duan, Y., Wu, C., Chowdhury, S., Lee, M. C., Xiong, G., Zhang, W., … Kollman, P. (2003). A point‐charge force field for molecular mechanics simulations of proteins based on condensed‐phase quantum mechanical calculations. Journal of Computational Chemistry, 24(16), 1999–2012. doi:10.1002/jcc.10349
  • Fujihashi, M., Mnpotra, J. S., Mishra, R. K., Pai, E. F., & Kotra, L. P. (2015). Orotidine monophosphate decarboxylase—A fascinating workhorse enzyme with therapeutic potential. Journal of Genetics and Genomics, 42(5), 221–234. doi:10.1016/j.jgg.2015.04.005
  • Gaulton, A., Bellis, L. J., Bento, A. P., Chambers, J., Davies, M., Hersey, A., … Overington, J. P. (2011). ChEMBL: A large-scale bioactivity database for drug discovery. Nucleic Acids Research, 40(D1), D1100–D1107. doi:10.1093/nar/gkr777
  • Gregson, A., & Plowe, C. V. (2005). Mechanisms of resistance of malaria parasites to antifolates. Pharmacological Reviews, 57(1), 117–145. doi:10.1124/pr.57.1.4
  • Gu, J., Gui, Y., Chen, L., Yuan, G., Lu, H.-Z., & Xu, X. (2013). Use of natural products as chemical library for drug discovery and network pharmacology. PLoS One, 8(4), e62839. doi:10.1371/journal.pone.0062839
  • Güner, O. F. (2000). Pharmacophore perception, development, and use in drug design. La Jolla, CA: International University Line.
  • Hess, B., Bekker, H., Berendsen, H. J., & Fraaije, J. G. (1997). LINCS: A linear constraint solver for molecular simulations. Journal of Computational Chemistry, 18(12), 1463–1472. doi:10.1002/(SICI)1096-987X(199709)18:12<1463::AID-JCC4>3.3.CO;2-L
  • Hou, T., Wang, J., Li, Y., & Wang, W. (2010). Assessing the performance of the MM/PBSA and MM/GBSA methods. 1. The accuracy of binding free energy calculations based on molecular dynamics simulations. Journal of Chemical Information and Modeling, 51(1), 69–82.
  • Hur, S., & Bruice, T. C. (2002). Molecular dynamic study of orotidine-5′-monophosphate decarboxylase in ground state and in intermediate state: A role of the 203–218 loop dynamics. Proceedings of the National Academy of Sciences of the United States of America, 99(15), 9668–9673. doi:10.1073/pnas.142307099
  • Jamshidi, S., Jalili, S., & Rafii-Tabar, H. (2015). Study of orotidine 5′-monophosphate decarboxylase in complex with the top three OMP, BMP, and PMP ligands by molecular dynamics simulation. Journal of Biomolecular Structure and Dynamics, 33(2), 404–417. doi:10.1080/07391102.2014.881303
  • Jamshidi, S., Rafii-Tabar, H., & Jalili, S. (2014). Investigation into mechanism of orotidine 5′-monophosphate decarboxylase enzyme by MM-PBSA/MM-GBSA and molecular docking. Molecular Simulation, 40(6), 469–476. doi:10.1080/08927022.2013.819579
  • Kalhor, H., Sadeghi, S., Marashiyan, M., Kalhor, R., Aghaei Gharehbolagh, S., Akbari Eidgahi, M. R., & Rahimi, H. (2019). Identification of new DNA gyrase inhibitors based on bioactive compounds from streptomyces: Structure-based virtual screening and molecular dynamics simulations approaches. Journal of Biomolecular Structure and Dynamics, 1–16.
  • Kramer, B., Rarey, M., & Lengauer, T. (1997). CASP2 experiences with docking flexible ligands using FlexX. Proteins: Structure, Function, and Genetics, 29(S1), 221–225.
  • Kumari, R., Kumar, R., Consortium, O. S. D. D., & Lynn, A. (2014). g_mmpbsa—A GROMACS tool for high-throughput MM-PBSA calculations. Journal of Chemical Information and Modeling, 54(7), 1951–1962. doi:10.1021/ci500020m
  • Lagunin, A., Filimonov, D., & Poroikov, V. (2010). Multi-targeted natural products evaluation based on biological activity prediction with PASS. Current Pharmaceutical Design, 16(15), 1703–1717. doi:10.2174/138161210791164063
  • Langley, D. B., Shojaei, M., Chan, C., Lok, H. C., Mackay, J. P., Traut, T. W., … Christopherson, R. I. (2008). Structure and inhibition of orotidine 5′-monophosphate decarboxylase from Plasmodium falciparum. Biochemistry, 47(12), 3842–3854. doi:10.1021/bi702390k
  • LeadIT version 2.1.8. (n.d.). BioSolveIT GmbH, Sankt Augustin, Germany. Retrieved from www.biosolveit.de/LeadIT.
  • Lipinski, C. A., Lombardo, F., Dominy, B. W., & Feeney, P. J. (1997). Experimental and computational approaches to estimate solubility and permeability in drug discovery and development settings. Advanced Drug Delivery Reviews, 23(1–3), 3–25. doi:10.1016/S0169-409X(96)00423-1
  • Liu, J., Zhu, Y., He, Y., Zhu, H., Gao, Y., Li, Z., … Wen, H. (2019). Combined pharmacophore modeling, 3D-QSAR and docking studies to identify novel HDAC inhibitors using drug repurposing. Journal of Biomolecular Structure and Dynamics, 1–15. doi:10.1080/07391102.2019.1590241
  • Löffler, M., Fairbanks, L. D., Zameitat, E., Marinaki, A. M., & Simmonds, H. A. (2005). Pyrimidine pathways in health and disease. Trends in Molecular Medicine, 11(9), 430–437. doi:10.1016/j.molmed.2005.07.003
  • Lone, M. Y., Athar, M., Gupta, V. K., & Jha, P. C. (2017a). Identification of Mycobacterium tuberculosis enoyl-acyl carrier protein reductase inhibitors: A combined in-silico and in-vitro analysis. Journal of Molecular Graphics and Modelling, 76, 172–180. doi:10.1016/j.jmgm.2017.07.005
  • Lone, M. Y., Athar, M., Gupta, V. K., & Jha, P. C. (2017b). Prioritization of natural compounds against mycobacterium tuberculosis 3-dehydroquinate dehydratase: A combined in-silico and in-vitro study. Biochemical and Biophysical Research Communications, 491(4), 1105–1111. doi:10.1016/j.bbrc.2017.08.020
  • Lone, M. Y., Kumar, S. P., Athar, M., & Jha, P. C. (2018). Exploration of Mycobacterium tuberculosis structural proteome: An in-silico approach. Journal of Theoretical Biology, 439, 14–23. doi:10.1016/j.jtbi.2017.11.021
  • Lone, M. Y., Manhas, A., Athar, M., & Jha, P. C. (2018). Identification of InhA inhibitors: A combination of virtual screening, molecular dynamics simulations and quantum chemical studies. Journal of Biomolecular Structure and Dynamics, 36(11), 2951–2965.
  • Manhas, A., Kumar, S. P., & Jha, P. C. (2016). Molecular modeling of Plasmodium falciparum peptide deformylase and structure-based pharmacophore screening for inhibitors. RSC Advances, 6(35), 29466–29485. doi:10.1039/C6RA01071G
  • Manhas, A., Lone, M. Y., & Jha, P. C. (2017). Multicomplex-based pharmacophore modeling coupled with molecular dynamics simulations: An efficient strategy for the identification of novel inhibitors of PfDHODH. Journal of Molecular Graphics and Modelling, 75, 413–423. doi:10.1016/j.jmgm.2017.04.025
  • Manhas, A., Lone, M. Y., & Jha, P. C. (2019a). In search of the representative pharmacophore hypotheses of the enzymatic proteome of Plasmodium falciparum: A multicomplex-based approach. Molecular Diversity, 23(2), 453–470. doi:10.1007/s11030-018-9885-5
  • Manhas, A., Lone, M. Y., & Jha, P. C. (2019b). Multicomplex-based pharmacophore modeling in conjunction with multi-target docking and molecular dynamics simulations for the identification of Pf DHFR inhibitors. Journal of Biomolecular Structure and Dynamics, 1–19. doi:10.1080/07391102.2018.1540362
  • Manhas, A., Patel, A., Lone, M. Y., Jha, P. K., & Jha, P. C. (2018). Identification of PfENR inhibitors: A hybrid structure‐based approach in conjunction with molecular dynamics simulations. Journal of Cellular Biochemistry, 119(10), 8490–8500. doi:10.1002/jcb.27075
  • Manhas, A., Patel, D., Lone, M. Y., & Jha, P. C. (2019). Identification of natural compound inhibitors against PfDXR: A hybrid structure-based molecular modeling approach and molecular dynamics simulation studies. Journal of Cellular Biochemistry, 1–13. doi:10.1002/jcb.28714
  • Meza-Avina, M. E., Wei, L., Liu, Y., Poduch, E., Bello, A. M., Mishra, R. K., … Kotra, L. P. (2010). Structural determinants for the inhibitory ligands of orotidine-5′-monophosphate decarboxylase. Bioorganic & Medicinal Chemistry, 18(11), 4032–4041. doi:10.1016/j.bmc.2010.04.017
  • Mundra, S., & Kotra, L. P. (2014). Design of inhibitors of ODCase. Future Medicinal Chemistry, 6(2), 165–177. doi:10.4155/fmc.13.198
  • Naman, C. B., Leber, C. A., & Gerwick, W. H. (2017). Modern natural products drug discovery and its relevance to biodiversity conservation. In Ipek Kurtböke (Ed.), Microbial resources (pp. 103–120). London, UK: Elsevier.
  • Novak, W. R., West, K. H., Kirkman, L. M., & Brandt, G. S. (2018). Re-refinement of Plasmodium falciparum orotidine 5′-monophosphate decarboxylase provides a clearer picture of an important malarial drug target. Acta Crystallographica Section F: Structural Biology Communications, 74(10), 664–668. doi:10.1107/S2053230X18010610
  • Rajendran, V. (2016). Structural analysis of oncogenic mutation of isocitrate dehydrogenase 1. Molecular Biosystems, 12(7), 2276–2287. doi:10.1039/C6MB00182C
  • Rajendran, V., Gopalakrishnan, C., & Purohit, R. (2016). Impact of point mutation P29S in RAC1 on tumorigenesis. Tumour Biology, 37(11), 15293–15304. doi:10.1007/s13277-016-5329-y
  • Rajendran, V., Gopalakrishnan, C., & Sethumadhavan, R. (2018). Pathological role of a point mutation (T315I) in BCR-ABL1 protein‐A computational insight. Journal of Cellular Biochemistry, 119(1), 918. doi:10.1002/jcb.26257
  • Rajendran, V., & Sethumadhavan, R. (2014). Drug resistance mechanism of PncA in Mycobacterium tuberculosis. Journal of Biomolecular Structure and Dynamics, 32(2), 209–221. doi:10.1080/07391102.2012.759885
  • Rarey, M., Kramer, B., Lengauer, T., & Klebe, G. (1996). A fast flexible docking method using an incremental construction algorithm. Journal of Molecular Biology, 261(3), 470–489.
  • Sakthivel, S., & Habeeb, S. (2018). Combined pharmacophore, virtual screening and molecular dynamics studies to identify Bruton’s tyrosine kinase inhibitors. Journal of Biomolecular Structure and Dynamics, 36(16), 4320–4337.
  • Saxena, S., Durgam, L., & Guruprasad, L. (2019). Multiple e-pharmacophore modelling pooled with high-throughput virtual screening, docking and molecular dynamics simulations to discover potential inhibitors of Plasmodium falciparum lactate dehydrogenase (PfLDH). Journal of Biomolecular Structure and Dynamics, 37(7), 1783–1799. doi:10.1080/07391102.2018.1471417
  • Shrivastava, A., Srivastava, S., Malik, R., Alam, M. M., Shaqiquzamman, M., & Akhtera, M. (2019). Identification of novel small molecule non-peptidomimetic inhibitor for prolyl oligopeptidase through in silico and in vitro approaches. Journal of Biomolecular Structure and Dynamics, 1–14 (just-accepted).
  • Singh, A., Maqbool, M., Mobashir, M., & Hoda, N. (2017). Dihydroorotate dehydrogenase: A drug target for the development of antimalarials. European Journal of Medicinal Chemistry, 125, 640–651. doi:10.1016/j.ejmech.2016.09.085
  • Stierand, K., & Rarey, M. (2010). Drawing the PDB: Protein − ligand complexes in two dimensions. ACS Medicinal Chemistry Letters, 1(9), 540–545. doi:10.1021/ml100164p
  • SYBYL. (1994). TRIPOS Associates Inc., St. Louis, Missouri, USA. Retrieved from http://www.tripos.com/
  • Takashima, Y., Mizohata, E., Krungkrai, S. R., Fukunishi, Y., Kinoshita, T., Sakata, T., … Inoue, T. (2012). The in silico screening and X-ray structure analysis of the inhibitor complex of Plasmodium falciparum orotidine 5′-monophosphate decarboxylase. The Journal of Biochemistry, 152(2), 133–138. doi:10.1093/jb/mvs070
  • Tan, D. S. (2004). Current progress in natural product-like libraries for discovery screening. Combinatorial Chemistry & High Throughput Screening, 7(7), 631–643.
  • Tokuoka, K., Kusakari, Y., Krungkrai, S. R., Matsumura, H., Kai, Y., Krungkrai, J., … Inoue, T. (2007). Structural basis for the decarboxylation of orotidine 5′-monophosphate (OMP) by Plasmodium falciparum OMP decarboxylase. Journal of Biochemistry, 143(1), 69–78. doi:10.1093/jb/mvm193
  • Van Der Spoel, D., Lindahl, E., Hess, B., Groenhof, G., Mark, A. E., & Berendsen, H. J. (2005). GROMACS: Fast, flexible, and free. Journal of Computational Chemistry, 26(16), 1701–1718. doi:10.1002/jcc.20291
  • Veber, D. F., Johnson, S. R., Cheng, H.-Y., Smith, B. R., Ward, K. W., & Kopple, K. D. (2002). Molecular properties that influence the oral bioavailability of drug candidates. Journal of Medicinal Chemistry, 45(12), 2615–2623. doi:10.1021/jm020017n
  • Wang, J., Wang, W., Kollman, P. A., & Case, D. A. (2006). Automatic atom type and bond type perception in molecular mechanical calculations. Journal of Molecular Graphics and Modelling, 25(2), 247–260. doi:10.1016/j.jmgm.2005.12.005
  • Wang, Y., Yang, L., Hou, J., Zou, Q., Gao, Q., Yao, W., … Zhang, J. (2019). Hierarchical virtual screening of the dual MMP-2/HDAC-6 inhibitors from natural products based on pharmacophore models and molecular docking. Journal of Biomolecular Structure and Dynamics, 37(3), 649–670. doi:10.1080/07391102.2018.1434833
  • World Health Organization. (2017). World malaria report. In WHO Global Malaria Programme. Geneva, Switzerland: World Health Organization.
  • World Malaria Report. (2015). WHO Global Malaria Programme. Geneva, Switzerland: World Health Organization.
  • World Malaria Report. (2018). Geneva, Switzerland: World Health Organization. Retrieved from https://www.who.int/malaria/publications/world-malaria-report-2018/en/
  • Yadav, M. K., Pandey, S. K., & Swati, D. (2013). Drug target prioritization in Plasmodium falciparum through metabolic network analysis, and inhibitor designing using virtual screening and docking approach. Journal of Bioinformatics and Computational Biology, 11(4), 1350003. doi:10.1142/S0219720013500030
  • Yamashita, F., & Hashida, M. (2004). In silico approaches for predicting ADME properties of drugs. Drug Metabolism and Pharmacokinetics, 19(5), 327–338.
  • Zhang, C., Li, Q., Meng, L., & Ren, Y. (2019). Design of novel dopamine D2 and serotonin 5-HT2A receptors dual antagonists toward schizophrenia: An integrated study with QSAR, molecular docking, virtual screening and molecular dynamics simulations. Journal of Biomolecular Structure and Dynamics, 1–26. doi:10.1080/07391102.2019.1590244
  • Zhang, X., Perez-Sanchez, H., & C Lightstone, F. (2017). A comprehensive docking and MM/GBSA rescoring study of ligand recognition upon binding antithrombin. Current Topics in Medicinal Chemistry, 17(14), 1631–1639. doi:10.2174/1568026616666161117112604

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.