293
Views
13
CrossRef citations to date
0
Altmetric
Research Articles

Structure-based drug target prioritisation and rational drug design for targeting Chlamydia trachomatis eye infections

, &
Pages 3131-3143 | Received 01 Jul 2019, Accepted 27 Jul 2019, Published online: 12 Aug 2019

References

  • Barth, E., Kuczera, K., Leimkuhler, B., & Skeel, R. D. (1995). Algorithms for constrained molecular dynamics. Journal of Computational Chemistry, 16(10), 1192–1209. doi:10.1002/jcc.540161003
  • Beagley, K. W., & Timms, P. (2000). Chlamydia trachomatis infection: Incidence, health costs and prospects for vaccine development. Journal of Reproductive Immunology, 48(1), 47–68. doi:10.1016/S0165-0378(00)00069-3
  • Berendsen, H. J. C., Postma, J. P. M., van Gunsteren, W. F., DiNola, A., & Haak, J. R. (1984). Molecular dynamics with coupling to an external bath. The Journal of Chemical Physics, 81(8), 3684–3690. doi:10.1063/1.448118
  • Bliven, K. A., Fisher, D. J., & Maurelli, A. T. (2012). Characterization of the activity and expression of arginine decarboxylase in human and animal Chlamydia pathogens. FEMS Microbiology Letters, 337(2), 140–146. doi:10.1111/1574-6968.12021
  • Bulatov, V. V., Justo, J. F., Cai, W., Yip, S., Argon, A. S., Lenosky, T., … Rubia, T. D. D L. (2001). Parameter-free modelling of dislocation motion: The case of silicon. Philosophical Magazine A, 81(5), 1257–1281. doi:10.1080/01418610108214440
  • Eramian, D., Eswar, N., Shen, M.-Y., & Sali, A. (2008). How well can the accuracy of comparative protein structure models be predicted? Protein Science, 17(11), 1881–1893. doi:10.1110/ps.036061.108
  • Halgren, T. A., Murphy, R. B., Friesner, R. A., Beard, H. S., Frye, L. L., Pollard, W. T., & Banks, J. L. (2004). Glide: A new approach for rapid, accurate docking and scoring. 2. Enrichment factors in database screening. Journal of Medicinal Chemistry, 47(7), 1750–1759. doi:10.1021/jm030644s
  • Horner, P. J. (2012). Azithromycin antimicrobial resistance and genital Chlamydia trachomatis infection: Duration of therapy may be the key to improving efficacy. Sexually Transmitted Infections, 88(3), 154–156. doi:10.1136/sextrans-2011-050385
  • Hughes, J. D., Blagg, J., Price, D. A., Bailey, S., Decrescenzo, G. A., Devraj, R. V., … Zhang, Y. (2008). Physiochemical drug properties associated with in vivo toxicological outcomes. Bioorganic & Medicinal Chemistry Letters, 18(17), 4872–4875. doi:10.1016/j.bmcl.2008.07.071
  • Islam, M. A., & Pillay, T. S. (2016). Structural requirements for potential HIV-integrase inhibitors identified using pharmacophore-based virtual screening and molecular dynamics studies. Molecular Biosystems, 12(3), 982–993. doi:10.1039/C5MB00767D
  • Kanehisa, M., Sato, Y., & Morishima, K. (2016). BlastKOALA and GhostKOALA: KEGG tools for functional characterization of genome and metagenome sequences. Journal of Molecular Biology, 428(4), 726–731. doi:10.1039/C5MB00767D
  • Kong, F. Y. S., & Hocking, J. S. (2015). Treatment challenges for urogenital and anorectal Chlamydia trachomatis. BMC Infectious Diseases, 15(1), 293. doi:10.1186/s12879-015-1030-9
  • Krivák, R., & Hoksza, D. (2018). P2Rank: Machine learning based tool for rapid and accurate prediction of ligand binding sites from protein structure. Journal of Cheminformatics, 10(1), 39. doi:10.1186/s13321-018-0285-8
  • Kumar, S., Sinha, K., Sharma, R., Purohit, R., & Padwad, Y. (2019). Phloretin and phloridzin improve insulin sensitivity and enhance glucose uptake by subverting PPARγ/Cdk5 interaction in differentiated adipocytes. Experimental Cell Research, 111480. doi:10.1016/j.yexcr.2019.06.025
  • Lagorce, D., Sperandio, O., Baell, J. B., Miteva, M. A., & Villoutreix, B. O. (2015). FAF-Drugs3: A web server for compound property calculation and chemical library design. Nucleic Acids Research, 43(W1), W200–W207. doi:10.1093/nar/gkv353
  • Lam, S. D., Das, S., Sillitoe, I., & Orengo, C. (2017). An overview of comparative modelling and resources dedicated to large-scale modelling of genome sequences. Acta Crystallographica Section D Structural Biology, 73(8), 628–640. doi:10.1107/S2059798317008920
  • Laskowski, R. A., MacArthur, M. W., Moss, D. S., & Thornton, J. M. (1993). PROCHECK: A program to check the stereochemical quality of protein structures. Journal of Applied Crystallography, 26(2), 283–291. doi:10.1107/S0021889892009944
  • Leiros, I., Timmins, J., Hall, D. R., & McSweeney, S. (2005). Crystal structure and DNA-binding analysis of RecO from Deinococcus radiodurans. The EMBO Journal, 24(5), 906–918. doi:10.1038/sj.emboj.7600582
  • Melo, F., Sánchez, R., & Sali, A. (2009). Statistical potentials for fold assessment. Protein Science, 11(2), 430–448. doi:10.1002/pro.110430
  • Nagarajan, D., & Chandra, N. (2013) PocketMatch (version 2.0): A parallel algorithm for the detection of structural similarities between protein ligand binding-sites. In 2013 National Conference on Parallel Computing Technologies (PARCOMPTECH) (pp. 1–6).
  • Petrovay, F., Németh, I., Balázs, A., & Balla, E. (2015). Chlamydial conjunctivitis: Prevalence and serovar distribution of Chlamydia trachomatis in adults. Journal of Medical Microbiology, 64(9), 967–970. doi:10.1099/jmm.0.000115
  • Pieper, U., Webb, B. M., Barkan, D. T., Schneidman-Duhovny, D., Schlessinger, A., Braberg, H., … Sali, A. (2011). ModBase, a database of annotated comparative protein structure models, and associated resources. Nucleic Acids Research, 39(Database), D465–D474. doi:10.1093/nar/gkq1091
  • Purohit, R., Kumar, S., & Hallan, V. (2018). Screening of potential inhibitor against coat protein of apple chlorotic leaf spot virus. Cell Biochemistry and Biophysics, 76(1–2), 273–278. doi:10.1007/s12013-017-0836-z
  • Rajendran, V. (2016). Structural analysis of oncogenic mutation of isocitrate dehydrogenase 1. Molecular Biosystems, 12(7), 2276–2287. doi:10.1039/C6MB00182C
  • Rajendran, V., Gopalakrishnan, C., & Purohit, R. (2016). Impact of point mutation P29S in RAC1 on tumorigenesis. Tumor Biology, 37(11), 15293–15304. doi:10.1007/s13277-016-5329-y
  • Raman, K., Yeturu, K., & Chandra, N. (2008). targetTB: A target identification pipeline for Mycobacterium tuberculosis through an interactome, reactome and genome-scale structural analysis. BMC Systems Biology, 2(1), 109. doi:10.1186/1752-0509-2-109
  • Sadhasivam, A., & Vetrivel, U. (2018a). Identification of potential drugs targeting L,L-diaminopimelate aminotransferase of Chlamydia trachomatis: An integrative pharmacoinformatics approach. Journal of Cellular Biochemistry, 120(2) ,2271–2288. doi:10.1002/jcb.27553
  • Sadhasivam, A., & Vetrivel, U. (2018b). Genome-wide codon usage profiling of ocular infective Chlamydia trachomatis serovars and drug target identification. Journal of Biomolecular Structure and Dynamics, 36(8), 1979–2003. doi:10.1080/07391102.2017.1343685
  • Samdani, A., Anupriya, S., & Umashankar, V. (2019). PocketPipe: A computational pipeline for integrated Pocketome prediction and comparison. Bioinformation, 15(4), 295–298. http://bioinformation.net/015/97320630015295.htm doi:10.6026/97320630015295
  • Santhiya, K., Manoj, T. P., Anitha, C., Umashankar, V., & Rajalakshmi, Y. (2010). Microbial informatics-unraveling the mysteries of pathogens. Advanced Biotech, 9(8), 20–24
  • Shelley, J. C., Cholleti, A., Frye, L. L., Greenwood, J. R., Timlin, M. R., & Uchimaya, M. (2007). Epik: A software program for pK(a) prediction and protonation state generation for drug-like molecules. Journal of Computer-Aided Molecular Design, 21(12), 681–691. doi:10.1007/s10822-007-9133-z
  • Shen, M. -Y., & Sali, A. (2006). Statistical potential for assessment and prediction of protein structures. Protein Science, 15(11), 2507–2524. doi:10.1110/ps.062416606
  • Sivashanmugam, M., Nagarajan, H., Vetrivel, U., Ramasubban, G., Therese, K. L., & Narahari, M. H. (2015). In silico analysis and prioritization of drug targets in Fusarium solani. Medical Hypotheses, 84(2), 81–84. doi:10.1016/j.mehy.2014.12.015
  • Somani, J., Bhullar, V. B., Workowski, K. A., Farshy, C. E., & Black, C. M. (2000). Multiple drug-resistant Chlamydia trachomatis associated with clinical treatment failure. The Journal of Infectious Diseases, 181(4), 1421–1427.
  • Tanwar, G., Mazumder, A. G., Bhardwaj, V., Kumari, S., Bharti, R., Yamini, … Purohit, R. (2019). Target identification, screening and in vivo evaluation of pyrrolone-fused benzosuberene compounds against human epilepsy using Zebrafish model of pentylenetetrazol-induced seizures. Scientific Reports, 9(1), 7904.
  • Tanwar, G., & Purohit, R. (2019). Gain of native conformation of Aurora A S155R mutant by small molecules. Journal of Cellular Biochemistry, 120(7), 11104. Advance online publication. doi:10.1002/jcb.28387
  • Taylor, H. R., Burton, M. J., Haddad, D., West, S., & Wright, H. (2014). Trachoma. Lancet (London, England)), 384(9960), 2142–2152. doi:10.1016/S0140-6736(13)62182-0
  • Tolbert, W. D., Graham, D. E., White, R. H., & Ealick, S. E. (2003). Pyruvoyl-dependent arginine decarboxylase from Methanococcus jannaschii: Crystal structures of the self-cleaved and S53A proenzyme forms. Structure (Structure), 11(3), 285–294. doi:10.1016/S0969-2126(03)00026-1
  • Umashankar, V., & Anupriya, S. (2018). In silico comparison of Chlamydia trachomatis drug binding pocketome vs. human and prioritization of potential drug targets. Investigative Ophthalmology & Visual Science (ARVO Annual Meeting Abstract), 59, 2364.
  • Umashankar, V., & Gurunathan, S. (2009a). Major reference works. Chemoinformatics and its Applications.
  • Umashankar, V., & Gurunathan, S. (2009b). Major reference works. In silico tools for molecular modeling.
  • van den Berg, B. (2012). Structural basis for outer membrane sugar uptake in pseudomonads. Journal of Biological Chemistry, 287(49), 41044–41052. doi:10.1074/jbc.M112.408518
  • Vetrivel, D. (2015). Drug discovery: An appraisal. International Journal of Pharmacy and Pharmaceutical Sciences, 7
  • Vetrivel, U., & Nagarajan, H. (2018). Deciphering ophthalmic adaptive inhibitors targeting RON4 of Toxoplasma gondii: An integrative in silico approach. Life Sciences, 213, 82–93. doi:10.1016/j.lfs.2018.10.022
  • Vetrivel, U., Subramanian, G., & Dorairaj, S. (2011). A novel in silico approach to identify potential therapeutic targets in human bacterial pathogens. The HUGO Journal, 5(1–4), 25–34. doi:10.1007/s11568-011-9152-7
  • Webb, B., & Sali, A. (2014). Protein structure modeling with MODELLER. Methods in Molecular Biology (Clifton, N.J.), 1137, 1–15. doi:10.1007/978-1-4939-0366-5_1
  • Xie, L., Xie, L., & Bourne, P. E. (2011). Structure-based systems biology for analyzing off-target binding. Current Opinion in Structural Biology, 21(2), 189–199. doi:10.1016/j.sbi.2011.01.004
  • Yang, J., Yan, R., Roy, A., Xu, D., Poisson, J., & Zhang, Y. (2015). The I-TASSER Suite: Protein structure and function prediction. Nature Methods, 12(1), 7–8. doi:10.1038/nmeth.3213
  • Yeturu, K., & Chandra, N. (2008). PocketMatch: A new algorithm to compare binding sites in protein structures. BMC Bioinformatics, 9(1), 543. doi:10.1186/1471-2105-9-543
  • Yoneya, M., Berendsen, H. J. C., & Hirasawa, K. (1994). A non-iterative matrix method for constraint molecular dynamics simulations. Molecular Simulation, 13(6), 395–405. doi:10.1080/08927029408022001

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.