291
Views
15
CrossRef citations to date
0
Altmetric
Research Articles

Molecular docking and dynamics studies on novel benzene sulfonamide substituted pyrazole-pyrazoline analogues as potent inhibitors of Plasmodium falciparum Histo aspartic protease

, &
Pages 3235-3245 | Received 14 Jun 2019, Accepted 05 Aug 2019, Published online: 24 Aug 2019

References

  • Aggarwal, S., Paliwal, D., Kaushik, D., Gupta, G. K., & Kumar, A. (2018). Pyrazole Schiff base hybrids as anti-malarial agents: synthesis, in vitro screening and computational study. Combinatorial Chemistry & High Throughput Screening, 21(3), 194–203. doi:10.2174/1386207321666180213092911
  • Andrews, K. T., Fisher, G. M., Sumanadasa, S. D., Skinner-Adams, T., Moeker, J., Lopez, M., & Poulsen, S. A. (2013). Antimalarial activity of compounds comprising a primary benzene sulfonamide fragment. Bioorganic & Medicinal Chemistry Letters, 23(22), 6114–6117. doi:10.1016/j.bmcl.2013.09.015
  • Banerjee, R., Liu, J., Beatty, W., Pelosof, L., Klemba, M., & Goldberg, D. E. (2002). Four plasmepsins are active in the Plasmodium falciparum food vacuole, including a protease with an active-site histidine. Proceedings of the National Academy of Sciences of Sciences, 99(2), 990–995. doi:10.1073/pnas.022630099
  • Bekhit, A. A., Haimanot, T., & Hymete, A. (2014). Evaluation of some 1H-pyrazole derivatives as a dual acting antimalarial and anti-leishmanial agents. Pakistan Journal of Pharmaceutical Sciences, 27(6), 1767–1773.
  • Bekhit, A. A., Saudi, M. N., Hassan, A. M. M., Fahmy, S. M., Ibrahim, T. M., Ghareeb, D., … Bekhit, A. E. A. (2019). Synthesis, in silico experiments and biological evaluation of 1,3,4-trisubstituted pyrazole derivatives as antimalarial agents. European Journal of Medicinal Chemistry, 1(163), 353–366. doi:10.1016/j.ejmech.2018.11.067
  • Berry, C., Humphreys, M. J., Matharu, P., Granger, R., Horrocks, P., Moon, R. P., … Kay, J. (1999). A Distinct member of the aspartic proteinase gene family from the human malaria parasite Plasmodium falciparum. FEBS Letters, 447(2–3), 149–154. doi:10.1016/S0014-5793(99)00276-8
  • Bhaumik, P., Xiao, H., Parr, C. L., Kiso, Y., Gustchina, A., Yada, R. Y., & Wlodawer, A. (2009). Crystal structures of the histo-aspartic protease (HAP) from Plasmodium falciparum. Journal of Molecular Biology, 388(3), 520–540. doi:10.1016/j.jmb.2009.03.011
  • Bhaumik, P., Xiao, H., Hidaka, K., Gustchina, A., Kiso, Y., Yada, R. Y., & Wlodawer, A. (2011). Structural insights into the activation and inhibition of histo aspartic protease from Plasmodium falciparum. Biochemistry, 50(41), 8862–8879. doi:10.1021/bi201118z
  • Bjelic, S., & Aqvist, J. (2004). Computational prediction of structure, substrate binding mode, mechanism, and rate for a malaria protease with a novel type of active site. Biochemistry, 43(46), 14521–14528. doi:10.1021/bi048252q
  • Coombs, G. H., Goldberg, D. E., Klemba, M., Berry, C., Kay, J., & Mottram, J. C. (2001). Aspartic proteases of Plasmodium falciparum and other parasitic protozoa as drug targets. Trends in Parasitology, 17(11), 532–537. doi:10.1016/S1471-4922(01)02037-2
  • Darden, T., York, D., & Pedersen, L. (1993). Particle mesh Ewald: An N log(N) method for Ewald sums in large systems. The Journal of Chemical Physics, 98(12), 10089–10092. doi:10.1063/1.464397
  • Devender, N., Gunjan, S., Tripathi, R., & Tripathi, R. P. (2017). Synthesis and antiplasmodial activity of novel indoleamide derivatives bearing sulfonamide and triazole pharmacophores. European Journal of Medicinal Chemistry, 131, 171–184. doi:10.1016/j.ejmech.2017.03.010
  • Esposito, A., Tiffert, T., Mauritz, J. M., Schlachter, S., Bannister, L. H., Kaminski, C. F., & Lew, V. L. (2008). FRET imaging of hemoglobin concentration in Plasmodium falciparum-infected red cells. PLoS One, 3(11), e3780. doi:10.1371/journal.pone.0003780
  • Hansson, T., Marelius, J., & Aqvist, J. (1998). Ligand binding affinity prediction by linear interaction energy methods. Journal of Computer-Aided Molecular Design, 12(1), 27–35. doi:10.1023/A:1007930623000
  • Hess, B., Kutzner, C., van der Spoel, D., & Lindahl, E. (2008). GROMACS 4: Algorithms for highly efficient, load-balanced, and scalable molecular simulation. Journal of Chemical Theory and Computation, 4(3), 435–447. doi:10.1021/ct700301q
  • Insuasty, B., Ramírez, J., Becerra, D., Echeverry, C., Quiroga, J., Abonia, R., … Cobo, J. (2015). An efficient synthesis of new caffeine-based chalcones, pyrazolines and pyrazolo[3,4-b][1,4]diazepines as potential antimalarial, antitrypanosomal and antileishmanial agents. European Journal of Medicinal Chemistry, 26(93), 401–413. doi:10.1016/j.ejmech.2015.02.040
  • Karad, S. C., Purohit, V. B., & Raval, D. K. (2014). Design, synthesis and characterization of fluoro substituted novel pyrazolylpyrazolines scaffold and their pharmacological screening. European Journal of Medicinal Chemistry, 84, 51–58. doi:10.1016/j.ejmech.2014.07.008
  • Kolakovich, K. A., Gluzman, I. Y., Duffin, K. L., & Goldberg, D. E. (1997). Generation of hemoglobin peptides in the acidic digestive vacuole of Plasmodium falciparum implicates peptide transport in amino acid production. Molecular and Biochemical Parasitology, 87(2), 123–135. doi:10.1016/S0166-6851(97)00062-5
  • Kumar, G., Tanwar, O., Kumar, J., Akhter, M., Sharma, S., Pillai, C. R., … Zama, M. S. (2018). Pyrazole-pyrazoline as promising novel antimalarial agents: A mechanistic study. European Journal of Medicinal Chemistry, 10(149), 139–147. doi:10.1016/j.ejmech.2018.01.082
  • Kumari, R., Kumar, R., & Lynn, A. (2014). g_mmpbsa—A GROMACS tool for high throughput MM-PBSA Calculations. Journal of Chemical Information and Modeling, 54(7), 1951–1962. doi:10.1021/ci500020m
  • Kumar Parai, M., Panda, G., Srivastava, K., & Kumar Puri, S. (2008). Design, synthesis and antimalarial activity of benzene and isoquinoline sulfonamide derivatives. Bioorganic & Medicinal Chemistry Letters, 18(2), 776–781. doi:10.1016/j.bmcl.2007.11.038
  • Lal Jat, J., Ojha, S., Bhambi, D., Dhakar, N., & Talesara, G. L. (2008). Synthesis and characterization of biologically significant 5,5'-(1,4-phenylene)bis(1-N-alkoxyphthalimido-3-aryl-2-pyrazoline) derivatives. Journal of Enzyme Inhibition and Medicinal Chemistry, 23(6), 882–887. doi:10.1080/14756360701442332
  • Li, Z., Wan, H., Shi, Y., & Ouyang, P. (2004). Personal experience with four kinds of chemical structure drawing software: Review on ChemDraw, ChemWindow, ISIS/Draw, and ChemSketch. Journal of Chemical Information and Computer Sciences, 44(5), 1886–1890. doi:10.1021/ci049794h
  • Malathi, K., Anbarasu, A., & Ramaiah, S. (2016). Ethyl iso-allocholate from a medicinal rice karungkavuni inhibits dihydropteroate synthase in Escherichia coli: A molecular docking and dynamics study. Indian Journal of Pharmaceutical Sciences, 78(6), 780–788. doi:10.1016/j.compbiolchem.2016.12.001
  • Malathi, K., Anbarasu, A., & Ramaiah, S. (2017). Exploring the resistance mechanism of imipenem in carbapenemhydrolysing class D beta-lactamases OXA-143 and its variant OXA-231 (D224A) expressing Acinetobacter baumannii: An in-silico approach. Computational Biology and Chemistry, 67, 1–8. doi:10.1016/j.compbiolchem.2016.12.001
  • Malathi, K., & Ramaiah, S. (2018). Bioinformatics approaches for new drug discovery: A review. Biotechnology and Genetic Engineering Reviews, 34(2), 243–260. doi:10.1080/02648725
  • Malathi, K., & Ramaiah, S. (2019). Mechanism of imipenem resistance in metallo-β-lactamases expressing pathogenic bacterial spp. and identification of potential inhibitors: An in silico approach. Journal of Cellular Biochemistry, 120(1), 584–591. doi:10.1002/jcb.27414
  • Marella, A., Shaquiquzzaman, M., Akhter, M., Verma, G., & Alam, M. M. (2015). Novel pyrazole-pyrazoline hybrids endowed with thioamide as antimalarial agents: Their synthesis and 3D-QSAR studies. Journal of Enzyme Inhibition and Medicinal Chemistry, 30(4), 597–606. doi:10.3109/14756366.2014.958081
  • Massova, I., & Kollman, P. A. (1999). Computational alanine scanning to probe protein-protein interactions: A novel approach to evaluate binding free energies. Journal of the American Chemical Society, 121(36), 8133–8143. doi:10.1021/ja990935j
  • Mishra, V. K., Mishra, M., Kashaw, V., & Kashaw, S. K. (2017). Synthesis of 1,3,5-trisubstituted pyrazolines as potential antimalarial and antimicrobial agents. Bioorganic & Medicinal Chemistry, 25(6), 1949–1962. doi:10.1016/j.bmc.2017
  • Nezami, A., Kimura, T., Hidaka, K., Kiso, A., Liu, J., Kiso, Y., … Freire, E. (2003). High-affinity inhibition of a family of Plasmodium falciparum proteases by a designed adaptive inhibitor. Biochemistry, 42(28), 8459–8464. doi:10.1021/bi034131z
  • O’Boyle, N. M., Banck, M., James, C. A., Morley, C., Vandermeersch, T., & Hutchison, G. R. (2011). Open Babel: An open chemical toolbox. Journal of Chemical Information and Modeling, 3, 33. doi:10.1186/1758-2946-3-33
  • Pandey, A. K., Sharma, S., Pandey, M., Alam, M. M., Shaquiquzzaman, M., & Akhter, M. (2016). 4, 5-Dihydrooxazole-pyrazoline hybrids: Synthesis and their evaluation as potential antimalarial agents. European Journal of Medicinal Chemistry, 10(123), 476–486. doi:10.1016/j.ejmech.2016.07.055
  • Ragunathan, A., Malathi, K., & Anbarasu, A. (2018). MurB as a target in an alternative approach to tackle the Vibrio cholerae resistance using molecular docking and simulation study. Journal of Cellular Biochemistry, 119(2), 1726–1732. doi:10.1002/jcb.26333
  • Raghuvanshi, D. S., Verma, N., Singh, S. V., Khare, S., Pal, A., & Negi, A. S. (2019). Synthesis of thymol-based pyrazolines: An effort to perceive novel potent-antimalarials. Bioorganic Chemistry, 88, 102933. doi:10.1016/j.bioorg.2019.102933
  • Ramírez-Prada, J., Robledo, S. M., Vélez, I. D., Crespo, M. D. P., Quiroga, J., Abonia, R., … Insuasty, B. (2017). Synthesis of novel quinoline-based 4,5-dihydro-1H-pyrazoles as potential anticancer, antifungal, antibacterial and antiprotozoal agents. European Journal of Medicinal Chemistry, 5(131), 237–254. doi:10.1016/j.ejmech.2017.03.016
  • Rao, S. N., Singh, U. C., Bash, P. A., & Kollman, P. A. (1987). Free energy perturbation calculations on binding and catalysis after mutating Asn 155 in subtilisin. Nature, 328(6130), 551–554. doi:10.1038/328551a0
  • Schmid, N., Eichenberger, A. P., Choutko, A., Riniker, S., Winger, M., Mark, A. E., & van Gunsteren, W. F. (2011). Definition and testing of the GROMOS force-field versions 54A7 and 54B7. European Biophysics Journal, 40(7), 843–856. doi:10.1007/s00249-011-0700-9
  • Schuttelkopf, A. W., & van Aalten, D. M. (2004). PRODRG: A tool for high-throughput crystallography of protein-ligand complexes. Acta Crystallographica Section D Biological Crystallography, 60(Pt 8), 1355–1363. doi:10.1107/S0907444904011679
  • Thillainayagam, M., Pandian, L., Murugan, K. K., Vijayaparthasarathi, V., Sundaramoorthy, S., Anbarasu, A., & Ramaiah, S. (2015). In silico analysis reveals the anti-malarial potential of quinolinylchalcone derivatives. Journal of Biomolecular Structure and Dynamics, 33(5), 961–977. doi:10.1080/07391102.2014.92027777
  • Thillainayagam, M., Anbarasu, A., & Ramaiah, S. (2016). Comparative Molecular Field Analysis and molecular docking studies on novel aryl chalcone derivatives against an important drug target cysteine protease in Plasmodium falciparum. Journal of Theoretical Biology, 403, 110–128. doi:10.1016/j.jtbi.2016.05.019
  • Thillainayagam, M., Malathi, K., & Ramaiah, S. (2017). In-Silico molecular docking and simulation studies on novel chalcone and flavone hybrid derivatives with 1, 2, 3-triazole linkage as vital inhibitors of Plasmodium falciparum dihydroorotate dehydrogenase. Journal of Biomolecular Structure and Dynamics, 36(15), 3993–4009. doi:10.1080/07391102.2017.1404935
  • Turner, P. J. (2005). XM GRACE, version 5.1.19, center for coastal and land-margin research. Beaverton, OR: Oregon Graduate Institute of Science and Technology.
  • Wanare, G., Aher, R., Kawathekar, N., Ranjan, R., Kaushik, N. K., & Sahal, D. (2010). Synthesis of novel alpha-pyranochalcones and pyrazoline derivatives as Plasmodium falciparum growth inhibitors. Bioorganic & Medicinal Chemistry Letters, 20(15), 4675–4678. doi:10.1016/j.bmcl.2010.05.069
  • WHO. (2018). World malaria report. Retrieved from https://www.who.int/malaria/publications/world-malaria-report-2018/en/

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.