198
Views
5
CrossRef citations to date
0
Altmetric
Research Articles

Deciphering the conformational preferences of furanosides. A molecular dynamics study

&
Pages 3359-3370 | Received 10 May 2019, Accepted 10 Aug 2019, Published online: 30 Aug 2019

References

  • Abraham, M. J., Murtola, T., Schulz, R., Páll, S., Smith, J. C., Hess, B., & Lindahl, E. (2015). GROMACS: High performance molecular simulations through multi-level parallelism from laptops to supercomputers. SoftwareX, 1–2, 19–25. doi: 10.1016/j.softx.2015.06.001
  • Altona, C., & Sundaralingam, M. (1972). Conformational analysis of the sugar ring in nucleosides and nucleotides. New description using the concept of pseudorotation. Journal of the American Chemical Society, 94(23), 8205–8212. doi: 10.1021/ja00778a043
  • Altona, C., & Sundaralingam, M. (1973). Conformational analysis of the sugar ring in nucleosides and nucleotides. Improved method for the interpretation of proton magnetic resonance coupling constants. Journal of the American Chemical Society, 95(7), 2333–2344. doi: 10.1021/ja00788a038
  • Angyal, S. J. (1968). Conformational analysis in carbohydrate chemistry. I. Conformational free energies. The conformations and α:β ratios of aldopyranoses in aqueous solution. Australian Journal of Chemistry, 21(11), 2737–2746. doi: 10.1071/CH9682737
  • Angyal, S. J. (1969). The composition and conformation of sugars in solution. Angewandte Chemie International Edition in English, 8(3), 157–166. doi: 10.1002/anie.196901571
  • Angyal, S. J. (1979). Hudson’s rules of isorotation as applied to furanosides, and the conformations of methyl aldofuranosides. Carbohydrate Research, 77(1), 37–50. doi: 10.1016/S0008-6215(00)83791-X
  • Barker, J. A., & Watts, R. O. (1973). Monte Carlo studies of the dielectric properties of water-like models. Molecular Physics, 26(3), 789–792. doi: 10.1080/00268977300102101
  • Berendsen, H. J. C., van Gunsteren, W. F., Zwinderman, H. R. J., & Geurtsen, R. G. (1986). Simulations of proteins in water. Annals of the New York Academy of Sciences, 482(1), 269–286. doi: 10.1111/j.1749-6632.1986.tb20961.x
  • Berendsen, H. J. C., Postma, J. P. M., van Gunsteren, W. F., & Hermans, J. (1981). Handbook of intermolecular forces. Israel: Springer-Science + Business Media BV.
  • Bussi, G., Donadio, D., & Parrinello, M. (2007). Canonical sampling through velocity rescaling. The Journal of Chemical Physics, 126(1), 014101. doi: 10.1063/1.2408420
  • Carapito, R., Imberty, A., Jeltsch, J.-M., Byrns, S. C., Tam, P.-H., Lowary, T. L., … Phalip, V. (2009). Molecular basis of arabinobio-hydrolase activity in phytopathogenic fungi crystal structure and catalytic mechanism of Fusarium graminearum GH93 exo-α-l-arabinanase. Journal of Biological Chemistry, 284(18), 12285–12296. doi: 10.1074/jbc.M900439200
  • de Leeuw, F. A. A. M., & Altona, C. (1983). Computer‐assisted pseudorotation analysis of five‐membered rings by means of proton spin–spin coupling constants: Program PSEUROT. Journal of Computational Chemistry, 4(3), 428–437. doi: 10.1002/jcc.540040319
  • Fadda, E., & Woods, R. J. (2010). Molecular simulations of carbohydrates and protein–carbohydrate interactions: Motivation, issues and prospects. Drug Discovery Today, 15(15–16), 596–609. doi: 10.1016/j.drudis.2010.06.001
  • Gaweda, K., & Plazinski, W. (2017). Pyranose ring conformations in mono- and oligosaccharides: A combined MD and DFT approach. Physical Chemistry Chemical Physics, 19(31), 20760–20772. doi: 10.1039/C7CP02920A
  • Gaweda, K., & Plazinski, W. (2019). The systematic influence of solvent on the conformational features of furanosides. Organic & Biomolecular Chemistry, 17(9), 2479–2485. doi: 10.1039/C9OB00043G
  • Golgher, D. B., Colli, W., Souto-Padrón, T., & Zingales, B. (1993). Galactofuranose-containing glycoconjugates of epimastigote and trypomastigote forms of Trypanosoma cruzi. Molecular and Biochemical Parasitology, 60(2), 249–264. doi: 10.1016/0166-6851(93)90136-L
  • Guvench, O., Mallajosyula, S. S., Raman, E. P., Hatcher, E., Vanommeslaeghe, K., Foster, T. J., … MacKerell, A. D. (2011). CHARMM additive all-atom force field for carbohydrate derivatives and its utility in polysaccharide and carbohydrate–protein modeling. Journal of Chemical Theory and Computation, 7(10), 3162–3180. doi: 10.1021/ct200328p
  • Haasnoot, C. A. G., de Leeuw, F. A. A. M., & Altona, C. (1980). The relationship between proton-proton NMR coupling constants and substituent electronegativities—I. Tetrahedron, 36(19), 2783–2792. doi: 10.1016/0040-4020(80)80155-4
  • Hansen, H. S., & Hünenberger, P. H. (2011). A reoptimized GROMOS force field for hexopyranose-based carbohydrates accounting for the relative free energies of ring conformers, anomers, epimers, hydroxymethyl rotamers, and glycosidic linkage conformers. Journal of Computational Chemistry, 32(6), 998–1032. doi: 10.1002/jcc.21675
  • Harvey, S. C., & Prabhakaran, M. (1986). Ribose puckering: Structure, dynamics, energetics, and pseudorotation cycle. Journal of the American Chemical Society, 108(20), 6128–6136. doi: 10.1021/ja00280a004
  • Hatcher, E., Guvench, O., & MacKerell, A. D. (2009). CHARMM additive all-atom force field for aldopentofuranoses, methyl-aldopentofuranosides, and fructofuranose. The Journal of Physical Chemistry B, 113(37), 12466–12476. doi: 10.1021/jp905496e
  • Heinz, T. N., van Gunsteren, W. F., & Hünenberger, P. H. (2001). Comparison of four methods to compute the dielectric permittivity of liquids from molecular dynamics simulations. The Journal of Chemical Physics, 115(3), 1125–1136. doi: 10.1063/1.1379764
  • Hendrickx, P. M. S., Corzana, F., Depraetere, S., Tourwé, D. A., Augustyns, K., & Martins, J. C. (2010). The use of time-averaged 3JHH restrained molecular dynamics (tar-MD) simulations for the conformational analysis of five-membered ring systems: Methodology and applications. Journal of Computational Chemistry, 31(3), 561–572. doi: 10.1002/jcc.21345
  • Hess, B. (2008). P-LINCS: A parallel linear constraint solver for molecular simulation. Journal of Chemical Theory and Computation, 4(1), 116–122. doi: 10.1021/ct700200b
  • Hess, B., Bekker, H., Berendsen, H. J. C., & Fraaije, J. G. E. M. (1997). LINCS: A linear constraint solver for molecular simulations. Journal of Computational Chemistry, 18(12), 1463–1472. doi: 10.1002/(SICI)1096-987X(199709)18:12 < 1463::AID-JCC4 > 3.0.CO;2-H
  • Hockney, R. W. (1970). Potential calculation and some applications. Methods of Computational Physics, 9, 135–211.
  • Jana, M., & MacKerell, A. D. (2015). CHARMM drude polarizable force field for aldopentofuranoses and methyl-aldopentofuranosides. The Journal of Physical Chemistry B, 119(25), 7846–7859. doi: 10.1021/acs.jpcb.5b01767
  • Kirschner, K. N., & Woods, R. J. (2001). Solvent interactions determine carbohydrate conformation. Proceedings of the National Academy of Sciences, 98(19), 10541–10545. doi: 10.1073/pnas.191362798
  • Langridge, R., Marvin, D. A., Seeds, W. E., Wilson, H. R., Hooper, C. W., Wilkins, M. H. F., & Hamilton, L. D. (1960). The molecular configuration of deoxyribonucleic acid: II. Molecular models and their Fourier transforms. Journal of Molecular Biology, 2(1), 38–IN12. doi: 10.1016/S0022-2836(60)80005-8
  • Levitt, M., & Warshel, A. (1978). Extreme conformational flexibility of the furanose ring in DNA and RNA. Journal of the American Chemical Society, 100(9), 2607–2613. doi: 10.1021/ja00477a004
  • Merritt, E. A., & Sundaralingam, M. (1985). A method for the determination of furanose ring coordinates in its pseudorotation circuit for different amplitudes of pucker. Journal of Biomolecular Structure and Dynamics, 3(3), 559–578. doi: 10.1080/07391102.1985.10508444
  • Miljkovic, M. (2014). Electrostatic and stereoelectronic effects in carbohydrate chemistry. New York, NY: Springer. doi: 10.1007/978-1-4614-8268-0
  • Miyamoto, S., & Kollman, P. A. (1992). Settle: An analytical version of the SHAKE and RATTLE algorithm for rigid water models. Journal of Computational Chemistry, 13(8), 952–962. doi: 10.1002/jcc.540130805
  • Nester, K., Gaweda, K., & Plazinski, W. (2019). A GROMOS force field for furanose-based carbohydrates. Journal of Chemical Theory and Computation, 15(2), 1168–1186. doi: 10.1021/acs.jctc.8b00838
  • Olson, W. K., & Sussman, J. L. (1982). How flexible is the furanose ring? 1. A comparison of experimental and theoretical studies. Journal of the American Chemical Society, 104(1), 270–278. doi: 10.1021/ja00365a049
  • Panczyk, K., Gaweda, K., Drach, M., & Plazinski, W. (2018). Extension of the GROMOS 56a6CARBO/CARBO_R force field for charged, protonated, and esterified uronates. The Journal of Physical Chemistry B, 122(14), 3696–3710. doi: 10.1021/acs.jpcb.7b11548
  • Panczyk, K., & Plazinski, W. (2018). Pyranose ring puckering in aldopentoses, ketohexoses and deoxyaldohexoses. A molecular dynamics study. Carbohydrate Research, 455, 62–70. doi: 10.1016/j.carres.2017.11.011
  • Playne, M. J. (2002). Carbohydrates as medicines - glycoscience: Oligosaccharides as drugs, functional foods, and receptors in the gut (Vol. 12, No. 3). Melbourne, Australia: AusBiotech.
  • Plazinski, W., & Drach, M. (2015). The influence of the hexopyranose ring geometry on the conformation of glycosidic linkages investigated using molecular dynamics simulations. Carbohydrate Research, 415, 17–27. doi: 10.1016/j.carres.2015.07.018
  • Plazinski, W., Gaweda, K., & Plazinska, A. (2019). Relation between the NMR data and the pseudorotational free-energy profile for oxolane. Journal of Theoretical and Computational Chemistry, 18(2), 1950012. doi: 10.1142/S0219633619500123
  • Plazinski, W., Lonardi, A., & Hünenberger, P. H. (2016). Revision of the GROMOS 56A6CARBO force field: Improving the description of ring-conformational equilibria in hexopyranose-based carbohydrates chains. Journal of Computational Chemistry, 37(3), 354–365. doi: 10.1002/jcc.24229
  • Praly, J.-P., & Lemieux, R. U. (1987). Influence of solvent on the magnitude of the anomeric effect. Canadian Journal of Chemistry, 65(1), 213–223. doi: 10.1139/v87-034
  • Rao, V. S. R. (1998). Conformation of carbohydrates. Amsterdam, The Netherlands: Harwood Academic Publishers.
  • Rehm, B. H. A. (Ed.). (2009). Microbial production of biopolymers and polymer precursors: Applications and perspectives. Norfolk, UK: Caister Academic Press.
  • Serianni, A. S., & Barker, R. (1984). [13C]-Enriched tetroses and tetrofuranosides: An evaluation of the relationship between NMR parameters and furanosyl ring conformation. Journal of Organic Chemistry, 49(18), 3292–3300. doi: 10.1021/jo00192a009
  • Seo, M., Castillo, N., Ganzynkowicz, R., Daniels, C. R., Woods, R. J., Lowary, T. L., & Roy, P.-N. (2008). Approach for the simulation and modeling of flexible rings: Application to the α-d-arabinofuranoside ring, a key constituent of polysaccharides from Mycobacterium tuberculosis. Journal of Chemical Theory and Computation, 4(1), 184–191. doi: 10.1021/ct700284r
  • Taha, H. A., Roy, P.-N., & Lowary, T. L. (2010). Theoretical investigations on the conformation of the beta-d-arabinofuranoside ring. Journal of Chemical Theory and Computation, 7(2), 420–432. doi: 10.1021/ct100450s
  • Taha, H., Castillo, N., Sears, D., Wasylishen, R., Lowary, T., & Roy, P.-N. (2010). Conformational analysis of arabinofuranosides: Prediction of 3JH,H using MD simulations with DFT-derived spin–spin coupling profiles. Journal of Chemical Theory and Computation, 6(1), 212–222. doi: 10.1021/ct900477x
  • Taha, H. A., Richards, M. R., & Lowary, T. L. (2013). Conformational analysis of furanoside-containing mono- and oligosaccharides. Chemical Reviews, 113(3), 1851–1876. doi: 10.1021/cr300249c
  • Tironi, I. G., Sperb, R., Smith, P. E., & van Gunsteren, W. F. (1995). A generalized reaction field method for molecular dynamics simulations. The Journal of Chemical Physics, 102(13), 5451–5459. doi: 10.1063/1.469273
  • Tribello, G. A., Bonomi, M., Branduardi, D., Camilloni, C., & Bussi, G. (2014). PLUMED 2: New feathers for an old bird. Computer Physics Communications, 185(2), 604–613. doi: 10.1016/j.cpc.2013.09.018
  • Wang, D., Ámundadóttir, M. L., van Gunsteren, W. F., & Hünenberger, P. H. (2013). Intramolecular hydrogen-bonding in aqueous carbohydrates as a cause or consequence of conformational preferences: A molecular dynamics study of cellobiose stereoisomers. European Biophysics Journal, 42(7), 521–537. doi: 10.1007/s00249-013-0901-5
  • Wang, X., & Woods, R. J. (2016). Insights into furanose solution conformations: Beyond the two-state model. Journal of Biomolecular NMR, 64(4), 291–305. doi: 10.1007/s10858-016-0028-y
  • Wiórkiewicz-Kuczera, J., & Rabczenko, A. (1985). Pseudorotation of the ribofuranose ring. A theoretical study and a comparison with nuclear magnetic resonance results. Journal of the Chemical Society, Perkin Transactions, 20(6), 789–797. doi: 10.1039/P29850000789
  • Wolfe, S. (1972). The Gauche effect. Some stereochemical consequences of adjacent electron pairs and polar bonds. Accounts of Chemical Research, 5(3), 102–111. doi: 10.1021/ar50051a003
  • Woods, R. J. (2018). Predicting the structures of glycans, glycoproteins, and their complexes. Chemical Reviews, 118(17), 8005–8024. doi: 10.1021/acs.chemrev.8b00032
  • Yadav, V. K. (2016). Steric and stereoelectronic effects in organic chemistry. Singapore: Springer.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.