717
Views
12
CrossRef citations to date
0
Altmetric
Research Articles

New strategy for identifying potential natural HIV-1 non-nucleoside reverse transcriptase inhibitors against drug-resistance: an in silico study

, , , , , , & show all
Pages 3327-3341 | Received 16 Oct 2018, Accepted 08 Aug 2019, Published online: 03 Sep 2019

References

  • Abu-Mustafa, E. A., el-Bay, F. K., & Fayez, M. B. (1971). Natural coumarins. XII. Umbelliprenin, a constituent of ammi majus L. fruits. Journal of Pharmaceutical Sciences, 60(5), 788–789. doi: 10.1002/jps.2600600528
  • Acuna, U. M., Jancovski, N., & Kennelly, E. J. (2009). Polyisoprenylated benzophenones from Clusiaceae: Potential drugs and lead compounds. Current Topics in Medicinal Chemistry, 9(16), 1560–1580.
  • Andersson, D. I., & Levin, B. R. (1999). The biological cost of antibiotic resistance. Current Opinion in Microbiology, 2(5), 489–493.
  • Battini, L., & Bollini, M. (2019). Challenges and approaches in the discovery of human immunodeficiency virus type-1 non-nucleoside reverse transcriptase inhibitors. Medicinal Research Reviews, 39(4), 1235–1273. doi: 10.1002/med.21544
  • Bauman, J. D., Das, K., Ho, W. C., Baweja, M., Himmel, D. M., Clark, A. D., … Arnold, E. (2008). Crystal engineering of HIV-1 reverse transcriptase for structure-based drug design. Nucleic Acids Research, 36(15), 5083–5092. doi: 10.1093/nar/gkn464
  • Best, R. B., Zhu, X., Shim, J., Lopes, P. E., Mittal, J., Feig, M., & Mackerell, A. D., Jr.(2012). Optimization of the additive CHARMM all-atom protein force field targeting improved sampling of the backbone phi, psi and side-chain chi(1) and chi(2) dihedral angles. Journal of Chemical Theory and Computation, 8(9), 3257–3273. doi: 10.1021/ct300400x
  • Beutler, J. A., Cardellina, J. H., II, McMahon, J. B., Boyd, M. R., & Cragg, G. M. (1992). Anti-HIV and cytotoxic alkaloids from Buchenavia capitata. Journal of Natural Products, 55(2), 207–213.
  • Broder, S. (2010). The development of antiretroviral therapy and its impact on the HIV-1/AIDS pandemic. Antiviral Research, 85(1), 1–18. doi: 10.1016/j.antiviral.2009.10.002
  • Byrnes, V. W., Sardana, V. V., Schleif, W. A., Condra, J. H., Waterbury, J. A., Wolfgang, J. A., … Wolanski, B. S. (1993). Comprehensive mutant enzyme and viral variant assessment of human immunodeficiency virus type 1 reverse transcriptase resistance to nonnucleoside inhibitors. Antimicrobial Agents and Chemotherapy, 37(8), 1576–1579. doi: 10.1128/AAC.37.8.1576
  • Chen, C. Y. (2011). TCM Database@Taiwan: The world’s largest traditional Chinese medicine database for drug screening in silico. PLoS One, 6(1), e15939. doi: 10.1371/journal.pone.0015939
  • Chen, M. W., Chen, W. R., Zhang, J. M., Long, X. Y., & Wang, Y. T. (2014). Lobelia chinensis: Chemical constituents and anticancer activity perspective. Chinese Journal of Natural Medicines, 12(2), 103–107. doi: 10.1016/S1875-5364(14)60016-9
  • Chen, R. T., & Zhongcaoyao, D. S. F. (1986). Chemical constituents of Torreya jackii. HI. Structure of torreyinol. Chinese Traditional and Herbal Drugs, 17, 566.
  • Cheng, M. J., Lee, K. H., Tsai, I. L., & Chen, I. S. (2005). Two new sesquiterpenoids and anti-HIV principles from the root bark of Zanthoxylum ailanthoides. Bioorganic & Medicinal Chemistry, 13(21), 5915–5920. doi: 10.1016/j.bmc.2005.07.050
  • Clutter, D. S., Jordan, M. R., Bertagnolio, S., & Shafer, R. W. (2016). HIV-1 drug resistance and resistance testing. Infection Genetics and Evolution, 46, 292–307. doi: 10.1016/j.meegid.2016.08.031
  • Cortes, D., Torrero, M. Y., Pilar D’Ocon, M., Luz Candenas, M., Cave, A., & Hadi, A. H. (1990). [Norstephalagine and atherospermidine: Two smooth muscle relaxant aporphines from Artabotrys maingayi]. Journal of Natural Products, 53(2), 503–508.
  • Creagh, T., Ruckle, J. L., Tolbert, D. T., Giltner, J., Eiznhamer, D. A., Dutta, B., … Xu, Z.-Q. (2001). Safety and pharmacokinetics of single doses of (+)-calanolide a, a novel, naturally occurring nonnucleoside reverse transcriptase inhibitor, in healthy, human immunodeficiency virus-negative human subjects. Antimicrobial Agents and Chemotherapy, 45(5), 1379–1386. doi: 10.1128/AAC.45.5.1379-1386.2001
  • Daeyaert, F., de Jonge, M., Heeres, J., Koymans, L., Lewi, P., Vinkers, M. H., & Janssen, P. A. (2004). A pharmacophore docking algorithm and its application to the cross-docking of 18 HIV-NNRTI’s in their binding pockets. Proteins: Structure, Function, and Bioinformatics, 54(3), 526–533. doi: 10.1002/prot.10599
  • Dagne, E., Gunatilaka, A. A., Kingston, D. G., & Alemu, M. (1993). 4′-O-methylstephavanine from Stephania abyssinica. Journal of Natural Products, 56(11), 2022–2025.
  • Das, K., Lewi, P. J., Hughes, S. H., & Arnold, E. (2005). Crystallography and the design of anti-AIDS drugs: Conformational flexibility and positional adaptability are important in the design of non-nucleoside HIV-1 reverse transcriptase inhibitors. Progress in Biophysics and Molecular Biology, 88(2), 209–231. doi: 10.1016/j.pbiomolbio.2004.07.001
  • Das, K., Martinez, S. E., Bandwar, R. P., & Arnold, E. (2014). Structures of HIV-1 RT-RNA/DNA ternary complexes with dATP and nevirapine reveal conformational flexibility of RNA/DNA: Insights into requirements for RNase H cleavage. Nucleic Acids Research, 42(12), 8125–8137. doi: 10.1093/nar/gku487
  • Das, K. C., Chakraborty, D. P., & Bose, P. K. (1965). Antifungal activity of some constituents of Murraya koenigii Spreng. Experientia, 21(6), 340. doi: 10.1007/BF02144703
  • Daszykowski, M., Walczak, B., Xu, Q.-S., Daeyaert, F., de Jonge, M. R., Heeres, J., … Massart, D. L. (2004). Classification and regression trees-studies of HIV reverse transcriptase inhibitors. Journal of Chemical Information and Computer Sciences, 44(2), 716–726. doi: 10.1021/ci034170h
  • de Bethune, M. P. (2010). Non-nucleoside reverse transcriptase inhibitors (NNRTIs), their discovery, development, and use in the treatment of HIV-1 infection: A review of the last 20 years (1989–2009. Antiviral Research, 85(1), 75–90. doi: 10.1016/j.antiviral.2009.09.008
  • De Clercq, E. (2002). Strategies in the design of antiviral drugs. Nature Reviews Drug Discovery, 1(1), 13–25. doi: 10.1038/nrd703
  • Delaugerre, C., Rohban, R., Simon, A., Mouroux, M., Tricot, C., Agher, R., … Calvez, V. (2001). Resistance profile and cross-resistance of HIV-1 among patients failing a non-nucleoside reverse transcriptase inhibitor-containing regimen. Journal of Medical Virology, 65(3), 445–448. doi: 10.1002/jmv.2055
  • El-Hawash, S. A. M., & Wahab, A. E. A. (2006). Synthesis and in vitro-anticancer and antimicrobial evaluation of some novel quinoxalines derived from 3-phenylquinoxaline-2(1H)-thione. Archiv Der Pharmazie, 339(8), 437–447. doi: 10.1002/ardp.200600012
  • Esposito, F., Corona, A., Zinzula, L., Kharlamova, T., & Tramontano, E. (2012). New Anthraquinone derivatives as inhibitors of the HIV-1 reverse transcriptase-associated ribonuclease H function. Chemotherapy, 58(4), 299–307. doi: 10.1159/000343101
  • Furumoto, T., Iwata, M., Hasan, A. F. M. F., & Fukui, H. (2003). Anthrasesamones from roots of Sesamum indicum. Phytochemistry, 64(4), 863–866. doi: 10.1016/j.phytochem.2003.09.004
  • Gottlieb, M. S., Schroff, R., Schanker, H. M., Weisman, J. D., Fan, P. T., Wolf, R. A., & Saxon, A. (1981). Pneumocystis carinii pneumonia and mucosal candidiasis in previously healthy homosexual men: Evidence of a new acquired cellular immunodeficiency. New England Journal of Medicine, 305(24), 1425–1431. doi: 10.1056/NEJM198112103052401
  • He, K., Iyer, K. R., Hayes, R. N., Sinz, M. W., Woolf, T. F., & Hollenberg, P. F. (1998). Inactivation of cytochrome P450 3A4 by bergamottin, a component of grapefruit juice. Chemical Research in Toxicology, 11(4), 252–259. doi: 10.1021/tx970192k
  • Hess, B., Kutzner, C., Van Der Spoel, D., & Lindahl, E. (2008). GROMACS 4: Algorithms for highly efficient, load-balanced, and scalable molecular simulation. Journal of Chemical Theory and Computation, 4(3), 435–447. doi: 10.1021/ct700301q
  • Higuchi, H., Mori, K., Kato, A., Ohkuma, T., Endo, T., Kaji, H., & Kaji, A. (1991). Antiretroviral activities of anthraquinones and their inhibitory effects on reverse transcriptase. Antiviral Research, 15(3), 205–216. doi: 10.1016/0166-3542(91)90067-2
  • Hogberg, M., Sahlberg, C., Engelhardt, P., Noreen, R., Kangasmetsa, J., Johansson, N. G., … Backbro, K. (2000). Urea-PETT compounds as a new class of HIV-1 reverse transcriptase inhibitors. 3. Synthesis and further structure-activity relationship studies of PETT analogues. (vol. 42, pg 4145, 1999). Journal of Medicinal Chemistry, 43(2), 304–304. doi: 10.1021/jm990572y
  • Hsiou, Y., Das, K., Ding, J., Clark, A. D., Kleim, J.-P., Rösner, M., … Arnold, E. (1998). Structures of Tyr188Leu mutant and wild-type HIV-1 reverse transcriptase complexed with the non-nucleoside inhibitor HBY 097: Inhibitor flexibility is a useful design feature for reducing drug resistance. Journal of Molecular Biology, 284(2), 313–323. doi: 10.1006/jmbi.1998.2171
  • Hsiou, Y., Ding, J., Das, K., Clark, A. D., Jr., Hughes, S. H., & Arnold, E. (1996). Structure of unliganded HIV-1 reverse transcriptase at 2.7 A resolution: Implications of conformational changes for polymerization and inhibition mechanisms. Structure, 4(7), 853–860. doi: 10.1016/S0969-2126(96)00091-3
  • Hu, X., Wu, J. W., Wang, M., Yu, M. H., Zhao, Q. S., Wang, H. Y., & Hou, A. J. (2012). 2-Arylbenzofuran, flavonoid, and tyrosinase inhibitory constituents of Morus yunnanensis. Journal of Natural Products, 75(1), 82–87. doi: 10.1021/np2007318
  • Humphrey, W., Dalke, A., & Schulten, K. (1996). VMD: Visual molecular dynamics. Journal of Molecular Graphics, 14(1), 27–38.
  • Iuldashev, M. P., Batirov, E., Vdovin, A. D., & Abdullaev, N. D. (2000). [Glabrizoflavone-a novel isoflavone from Glycyrrhiza glabra L]. Bioorganicheskaia Khimiia, 26(11), 873–876. [
  • Ivanova, V., Kolarova, M., Aleksieva, K., Dornberger, K.-J., Haertl, A., Moellmann, U., … Chipev, N. (2007). Sanionins: Anti-inflammatory and antibacterial agents with weak cytotoxicity from the Antarctic moss Sanionia georgico-uncinata. Preparative Biochemistry and Biotechnology, 37(4), 343–352. doi: 10.1080/10826060701593241
  • Janssen, P. A. J., Lewi, P. J., Arnold, E., Daeyaert, F., de Jonge, M., Heeres, J., … Stoffels, P. (2005). In search of a novel anti-HIV drug: Multidisciplinary coordination in the discovery of 4-[[4-[[4-[(1E)-2-cyanoethenyl]-2,6-dimethylphenyl]amino]-2-pyrimidinyl]amino]benzonitrile (R278474, rilpivirine). Journal of Medicinal Chemistry, 48(6), 1901–1909. doi: 10.1021/jm040840e
  • Johnson, J. A., Li, J.-F., Wei, X., Lipscomb, J., Irlbeck, D., Craig, C., … Heneine, W. (2008). Minority HIV-1 drug resistance mutations are present in antiretroviral treatment-naive populations and associate with reduced treatment efficacy. Plos Medicine, 5(7), e158–1122. doi:ARTN e158 doi: 10.1371/journal.pmed.0050158
  • Jorgensen, W. L., Ruiz-Caro, J., Tirado-Rives, J., Basavapathruni, A., Anderson, K. S., & Hamilton, A. D. (2006). Computer-aided design of non-nucleoside inhibitors of HIV-1 reverse transcriptase. Bioorganic & Medicinal Chemistry Letters, 16(3), 663–667. doi: 10.1016/j.bmcl.2005.10.038
  • Kadota, S., Tezuka, Y., Prasain, J. K., Ali, M. S., & Banskota, A. H. (2003). Novel diarylheptanoids of Alpinia blepharocalyx. Current Topics in Medicinal Chemistry, 3(2), 203–225.
  • Kijjoa, A., Pinto, M. M., Tantisewie, B., & Herz, W. (1989). A new linalool derivative and other constituents from Piper ribesoides. Planta Medica, 55(2), 193–194. doi: 10.1055/s-2006-961923
  • Kirkiacharian, S., Thuy, D. T., Sicsic, S., Bakhchinian, R., Kurkjian, R., & Tonnaire, T. (2002). Structure-activity relationships of some 3-substituted-4-hydroxycoumarins as HIV-1 protease inhibitors. Farmaco, 57(9), 703–708. doi: 10.1016/S0014-827X(02)01264-8
  • Kitamura, K., Honda, M., Yoshizaki, H., Yamamoto, S., Nakane, H., Fukushima, M., … Tokunaga, T. (1998). Baicalin, an inhibitor of HIV-1 production in vitro. Antiviral Research, 37(2), 131–140.
  • Koch, M. A., Schuffenhauer, A., Scheck, M., Wetzel, S., Casaulta, M., Odermatt, A., … Waldmann, H. (2005). Charting biologically relevant chemical space: A structural classification of natural products (SCONP). Proceedings of the National Academy of Sciences of the United States of America, 102(48), 17272–17277. doi: 10.1073/pnas.0503647102
  • Kozawa, M., Fukumoto, M., Matsuyama, Y., & Baba, K. (1983). Chemical studies on the constituents of the Chinese crude drug “Quiang Huo”. Chemical & Pharmaceutical Bulletin, 31(8), 2712–2717. doi: 10.1248/cpb.31.2712
  • Kroeger Smith, M. B., Hughes, S. H., Boyer, P. L., Michejda, C. J., Rouzer, C. A., Taneyhill, L. A., … Zhang, W. (1995). Molecular modeling studies of HIV-1 reverse transcriptase nonnucleoside inhibitors: Total energy of complexation as a predictor of drug placement and activity. Protein Science, 4(10), 2203–2222. doi: 10.1002/pro.5560041026
  • Kumari, R., Kumar, R., Open Source Drug Discovery Consortium, & Lynn, A. (2014). g_mmpbsa–a GROMACS tool for high-throughput MM-PBSA calculations. Journal of Chemical Information and Modeling, 54(7), 1951–1962. doi: 10.1021/ci500020m
  • Kurapati, K. R. V., Atluri, V. S., Samikkannu, T., Garcia, G., & Nair, M. P. N. (2016). Natural products as anti-HIV agents and role in HIV-Associated Neurocognitive Disorders (HAND): A brief overview. Frontiers in Microbiology, 6(212). doi:ARTN 1444 10.3389/fmicb.2015.01444
  • Kuroda, D. G., Bauman, J. D., Challa, J. R., Patel, D., Troxler, T., Das, K., … Hochstrasser, R. M. (2013). Snapshot of the equilibrium dynamics of a drug bound to HIV-1 reverse transcriptase. Nature Chemistry, 5(3), 174–181. doi: 10.1038/nchem.1559
  • Laskowski, R. A., & Swindells, M. B. (2011). LigPlot+: Multiple ligand-protein interaction diagrams for drug discovery. Journal of Chemical Information and Modeling, 51(10), 2778–2786. doi: 10.1021/ci200227u
  • Li, B. Q., Fu, T., Yan, Y. D., Baylor, N. W., Ruscetti, F. W., & Kung, H. F. (1993). Inhibition of HIV infection by baicalin–a flavonoid compound purified from Chinese herbal medicine. Cellular & Molecular Biology Research, 39(2), 119–124.
  • Li, S., Hattori, T., & Kodama, E. N. (2011). Epigallocatechin gallate inhibits the HIV reverse transcription step. Antiviral Chemistry and Chemotherapy, 21(6), 239–243. doi: 10.3851/IMP1774
  • Li, X., Zhang, L., Tian, Y., Song, Y., Zhan, P., & Liu, X. (2014). Novel HIV-1 non-nucleoside reverse transcriptase inhibitors: A patent review (2011–2014). Expert Opinion on Therapeutic Patents, 24(11), 1199–1227. doi: 10.1517/13543776.2014.964685
  • Lu, X., Liu, L., Zhang, X., Lau, T. C. K., Tsui, S. K. W., Kang, Y., … Chen, Z. (2012). F18, a novel small-molecule nonnucleoside reverse transcriptase inhibitor, inhibits HIV-1 replication using distinct binding motifs as demonstrated by resistance selection and docking analysis. Antimicrobial Agents and Chemotherapy, 56(1), 341–351. doi: 10.1128/AAC.05537-11
  • Madrid, M., Jacobo-Molina, A., Ding, J., & Arnold, E. (1999). Major subdomain rearrangement in HIV-1 reverse transcriptase simulated by molecular dynamics. Proteins: Structure, Function, and Genetics, 35(3), 332–337. doi: 10.1002/(SICI)1097-0134(19990515)35:3<332::AID-PROT7>3.0.CO;2-R
  • Manfredi, K. P., Vallurupalli, V., Demidova, M., Kindscher, K., & Pannell, L. K. (2001). Isolation of an anti-HIV diprenylated bibenzyl from Glycyrrhiza lepidota. Phytochemistry, 58(1), 153–157. doi: 10.1016/S0031-9422(01)00177-7
  • Marcotullio, M. C., Pelosi, A., & Curini, M. (2014). Hinokinin, an emerging bioactive lignan. Molecules, 19(9), 14862–14878. doi: 10.3390/molecules190914862
  • Menendez-Arias, L. (2013). Molecular basis of human immunodeficiency virus type 1 drug resistance: Overview and recent developments. Antiviral Research, 98(1), 93–120. doi: 10.1016/j.antiviral.2013.01.007
  • Michaud-Agrawal, N., Denning, E. J., Woolf, T. B., & Beckstein, O. (2011). Software news and updates MDAnalysis: A toolkit for the analysis of molecular dynamics simulations. Journal of Computational Chemistry, 32(10), 2319–2327. doi: 10.1002/jcc.21787
  • Minkara, M. S., Davis, P. H., & Radhakrishnan, M. L. (2012). Multiple drugs and multiple targets: An analysis of the electrostatic determinants of binding between non-nucleoside HIV-1 reverse transcriptase inhibitors and variants of HIV-1 RT. Proteins: Structure, Function, and Bioinformatics, 80(2), 573–590. doi: 10.1002/prot.23221
  • Mysinger, M. M., Carchia, M., Irwin, J. J., & Shoichet, B. K. (2012). Directory of useful decoys, enhanced (DUD-E): Better ligands and decoys for better benchmarking. Journal of Medicinal Chemistry, 55(14), 6582–6594. doi: 10.1021/jm300687e
  • Namasivayam, V., Vanangamudi, M., Kramer, V. G., Kurup, S., Zhan, P., Liu, X., … Byrareddy, S. N. (2019). The journey of HIV-1 non-nucleoside reverse transcriptase inhibitors (NNRTIs) from lab to clinic. Journal of Medicinal Chemistry, 62(10), 4851–4883. doi: 10.1021/acs.jmedchem.8b00843
  • Ng, T. B., Huang, B., Fong, W. P., & Yeung, H. W. (1997). Anti-human immunodeficiency virus (anti-HIV) natural products with special emphasis on HIV reverse transcriptase inhibitors. Life Sciences, 61(10), 933–949. doi: 10.1016/S0024-3205(97)00245-2
  • Nizami, B., Sydow, D., Wolber, G., & Honarparvar, B. (2016). Molecular insight on the binding of NNRTI to K103N mutated HIV-1 RT: Molecular dynamics simulations and dynamic pharmacophore analysis. Molecular Biosystems, 12(11), 3385–3395. doi: 10.1039/C6MB00428H
  • Ono, K., Nakane, H., Fukushima, M., Chermann, J. C., & Barre-Sinoussi, F. (1989). Inhibition of reverse transcriptase activity by a flavonoid compound, 5,6,7-trihydroxyflavone. Biochemical and Biophysical Research Communications, 160(3), 982–987. doi: 10.1016/S0006-291X(89)80097-X
  • Ozturk, S. E., Akgul, Y., & Anil, H. (2008). Synthesis and antibacterial activity of egonol derivatives. Bioorganic & Medicinal Chemistry, 16(8), 4431–4437. doi: 10.1016/j.bmc.2008.02.057
  • Palumbi, S. R. (2001). Humans as the world’s greatest evolutionary force. Science, 293(5536), 1786–1790. doi: 10.1126/science.293.5536.1786
  • Piao, Z. S., Feng, Y. B., Wang, L., Zhang, X. Q., & Lin, M. (2010). Synthesis and HIV-1 inhibitory activity of natural products isolated from Gnetum parvifolium and their analogues. Yao Xue Xue Bao, 45(12), 1509–1515.
  • Pistelli, L., Bertoli, A., Giachi, I. I., & Manunta, A. (1998). Flavonoids from genista ephedroides. Journal of Natural Products, 61(11), 1404–1406. doi: 10.1021/np980112s
  • Preston, B. D., Poiesz, B. J., & Loeb, L. A. (1988). Fidelity of HIV-1 reverse transcriptase. Science (New York, N.Y.), 242(4882), 1168–1171. doi: 10.1126/science.2460924
  • Qin, X.-D., Dong, Z.-J., Liu, J.-K., Yang, L.-M., Wang, R.-R., Zheng, Y.-T., … Zheng, Q.-T. (2006). Concentricolide, an anti-HIV agent from the ascomycete Daldinia concentrica. Helvetica Chimica Acta, 89(1), 127–133.
  • Qureshi, A., Rajput, A., Kaur, G., & Kumar, M. (2018). HIVprotI: An integrated web based platform for prediction and design of HIV proteins inhibitors. Journal of Cheminformatics, 10(1), 12. doi: 10.1186/s13321-018-0266-y
  • Ragno, R., Mai, A., Sbardella, G., Artico, M., Massa, S., Musiu, C., … La Colla, P. (2004). Computer-aided design, synthesis, and anti-HIV-1 activity in vitro of 2-alkylamino-6-[1-(2,6-difluorophenyl)alkyl]-3,4-dihydro-5-alkylpyrimidin-4(3H)-o nes as novel potent non-nucleoside reverse transcriptase inhibitors, also active against the Y181C variant. Journal of Medicinal Chemistry, 47(4), 928–934. doi: 10.1021/jm0309856
  • Roberts, J. D., Bebenek, K., & Kunkel, T. A. (1988). The accuracy of reverse transcriptase from HIV-1. Science (New York, N.Y.), 242(4882), 1171–1173. doi: 10.1126/science.2460925
  • Rodgers, D. W., Gamblin, S. J., Harris, B. A., Ray, S., Culp, J. S., Hellmig, B., … Harrison, S. C. (1995). The structure of unliganded reverse transcriptase from the human immunodeficiency virus type 1. Proceedings of the National Academy of Sciences of the United States of America, 92(4), 1222–1226. doi: 10.1073/pnas.92.4.1222
  • Rubsamen-Waigmann, H., Huguenel, E., Shah, A., Paessens, A., Ruoff, H. J., von Briesen, H., … Wainberg, M. A. (1999). Resistance mutations selected in vivo under therapy with anti-HIV drug HBY 097 differ from resistance pattern selected in vitro. Antiviral Research, 42(1), 15–24. doi: 10.1016/S0166-3542(99)00010-8
  • Salehi, B., Kumar, N., Şener, B., Sharifi-Rad, M., Kılıç, M., Mahady, G., … Sharifi-Rad, J. (2018). Medicinal plants used in the treatment of human immunodeficiency virus. International Journal of Molecular Sciences, 19(5), 1459. doi:ARTN 1459 doi: 10.3390/ijms19051459
  • Sancho, R., Márquez, N., Gómez-Gonzalo, M., Calzado, M. A., Bettoni, G., Coiras, M. T., … Muñoz, E. (2004). Imperatorin inhibits HIV-1 replication through an Sp1-dependent pathway. Journal of Biological Chemistry, 279(36), 37349–37359. doi: 10.1074/jbc.M401993200
  • Santos, L. H., Ferreira, R. S., & Caffarena, E. R. (2015). Computational drug design strategies applied to the modelling of human immunodeficiency virus-1 reverse transcriptase inhibitors. Memórias Do Instituto Oswaldo Cruz, 110(7), 847–864. doi: 10.1590/0074-02760150239
  • Sarafianos, S. G., Das, K., Hughes, S. H., & Arnold, E. (2004). Taking aim at a moving target: Designing drugs to inhibit drug-resistant HIV-1 reverse transcriptases. Current Opinion in Structural Biology, 14(6), 716–730. doi: 10.1016/j.sbi.2004.10.013
  • Seckler, J. M., Leioatts, N., Miao, H., & Grossfield, A. (2013). The interplay of structure and dynamics: Insights from a survey of HIV-1 reverse transcriptase crystal structures. Proteins: Structure, Function, and Bioinformatics, 81(10), 1792–1801. doi: 10.1002/prot.24325
  • Shafer, R. W., & Schapiro, J. M. (2008). HIV-1 drug resistance mutations: An updated framework for the second decade of HAART. AIDS Review, 10(2), 67–84.
  • Shafer, R. W., & Vuitton, D. A. (1999). Highly active antiretroviral therapy (HAART) for the treatment of infection with human immunodeficiency virus type 1. Biomedicine & Pharmacotherapy, 53(2), 73–86. doi: 10.1016/S0753-3322(99)80063-8
  • Shode, F. O., Mahomed, A. S., & Rogers, C. B. (2002). Typhaphthalide and typharin, two phenolic compounds from Typha capensis. Phytochemistry, 61(8), 955–957. doi: 10.1016/S0031-9422(02)00439-9
  • Singh, I. P., Bharate, S. B., & Bhutani, K. (2005). Anti-HIV natural products. Current Science, 89(2), 269.
  • Sluis-Cremer, N. (2014). The emerging profile of cross-resistance among the nonnucleoside HIV-1 reverse transcriptase inhibitors. Viruses, 6(8), 2960–2973. doi: 10.3390/v6082960
  • Sluis-Cremer, N. (2018). Future of nonnucleoside reverse transcriptase inhibitors. Proceedings of the National Academy of Sciences, 115(4), 637–638. doi: 10.1073/pnas.1720975115
  • Sluis-Cremer, N., & Tachedjian, G. (2008). Mechanisms of inhibition of HIV replication by non-nucleoside reverse transcriptase inhibitors. Virus Research, 134(1–2), 147–156. doi: 10.1016/j.virusres.2008.01.002
  • Squires, K. E. (2001). An introduction to nucleoside and nucleotide analogues. Antiviral Therapy, 6(Suppl. 3), 1–14.
  • Su, B.-N., Cuendet, M., Hawthorne, M. E., Kardono, L. B. S., Riswan, S., Fong, H. H. S., … Kinghorn, A. D. (2002). Constituents of the bark and twigs of Artocarpus dadah with cyclooxygenase inhibitory activity. Journal of Natural Products, 65(2), 163–169. doi: 10.1021/np010451c
  • Temiz, N. A., & Bahar, I. (2002). Inhibitor binding alters the directions of domain motions in HIV-1 reverse transcriptase. Proteins: Structure, Function, and Genetics, 49(1), 61–70. doi: 10.1002/prot.10183
  • Vanommeslaeghe, K., Hatcher, E., Acharya, C., Kundu, S., Zhong, S., Shim, J., … Mackerell, A. D. Jr.(2010). CHARMM general force field: A force field for drug-like molecules compatible with the CHARMM all-atom additive biological force fields. Journal of Computational Chemistry, 31(4), 671–690. doi: 10.1002/jcc.21367
  • Wensing, A. M., Calvez, V., Günthard, H. F., Johnson, V. A., Paredes, R., Pillay, D., … Richman, D. D. (2015). 2015 Update of the drug resistance mutations in HIV-1. Topics in Antiviral Medicine, 23(4), 132–141.
  • Wensing, A. M., Calvez, V., Günthard, H. F., Johnson, V. A., Paredes, R., Pillay, D., … Richman, D. D. (2017). 2017 Update of the drug resistance mutations in HIV-1. Topic in Antiviral Medicine, 24(4), 132–133.
  • Yin, J., Kouda, K., Tezuka, Y., Le Tran, Q., Miyahara, T., Chen, Y., & Kadota, S. (2004). New diarylheptanoids from the rhizomes of Dioscorea spongiosa and their antiosteoporotic activity. Planta Medica, 70(1), 54–58. doi: 10.1055/s-2004-815456
  • Zakaryan, H., Arabyan, E., Oo, A., & Zandi, K. (2017). Flavonoids: Promising natural compounds against viral infections. Archives of Virology, 162(9), 2539–2551. doi: 10.1007/s00705-017-3417-y
  • Zhan, P., Chen, X., Li, D., Fang, Z., De Clercq, E., & Liu, X. (2013). HIV-1 NNRTIs: Structural diversity, pharmacophore similarity, and implications for drug design. Medicinal Research Reviews, 33(Suppl. 1), E1–E72. doi: 10.1002/med.20241
  • Zhan, P., Pannecouque, C., De Clercq, E., & Liu, X. (2016). Anti-HIV drug discovery and development: Current innovations and future trends. Journal of Medicinal Chemistry, 59(7), 2849–2878. doi: 10.1021/acs.jmedchem.5b00497
  • Zhang, L., Xu, L., Xiao, S.-S., Liao, Q.-F., Li, Q., Liang, J., … Bi, K.-S. (2007). Characterization of flavonoids in the extract of Sophora flavescens Ait. by high-performance liquid chromatography coupled with diode-array detector and electrospray ionization mass spectrometry. Journal of Pharmaceutical and Biomedical Analysis, 44(5), 1019–1028. doi: 10.1016/j.jpba.2007.04.019
  • Zheng, G. Q., Ho, D. K., Elder, P. J., Stephens, R. E., Cottrell, C. E., & Cassady, J. M. (1994). Ohioensins and pallidisetins: Novel cytotoxic agents from the moss Polytrichum pallidisetum. Journal of Natural Products, 57(1), 32–41. doi: 10.1021/np50103a005
  • Zhou, P., Takaishi, Y., Duan, H., Chen, B., Honda, G., Itoh, M., … Lee, K. H. (2000). Coumarins and bicoumarin from Ferula sumbul: Anti-HIV activity and inhibition of cytokine release. Phytochemistry, 53(6), 689–697.
  • Zhou, Y., Ning, Z., Lee, Y., Hambly, B. D., & McLachlan, C. S. (2016). Shortened leukocyte telomere length in type 2 diabetes mellitus: Genetic polymorphisms in mitochondrial uncoupling proteins and telomeric pathways. Clinical and Translational Medicine, 5(1), 8. doi: 10.1186/s40169-016-0089-2

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.