521
Views
9
CrossRef citations to date
0
Altmetric
Research Articles

Novel AChE and BChE inhibitors using combined virtual screening, text mining and in vitro binding assays

, , &
Pages 3342-3358 | Received 01 Aug 2019, Accepted 09 Aug 2019, Published online: 06 Oct 2019

References

  • Anand, R., Gill, K. D., & Mahdi, A. A. (2014). Therapeutics of Alzheimer's disease: Past, present and future. Neuropharmacology, 76(Pt A), 27–50. doi:10.1016/j.neuropharm.2013.07.004
  • Auld, D. S., Kornecook, T. J., Bastianetto, S., & Quirion, R. (2002). Alzheimer’s disease and the basal forebrain cholinergic system: Relations to beta-amyloid peptides, cognition, and treatment strategies. Progress in Neurobiology, 68(3), 209–245. doi:10.1016/S0301-0082(02)00079-5
  • Bandini, M. (2013). Electrophilicity: the “dark-side” of indole chemistry. Organic & Biomolecular Chemistry, 11(32), 5206–5212. doi:10.1039/c3ob40735g
  • Banks, J. L., Beard, H. S., Cao, Y., Cho, A. E., Damm, W., Farid, R., … Levy, R. M. (2005). Integrated Modeling Program, Applied Chemical Theory (IMPACT). Journal of Computational Chemistry, 26(16), 1752–1780. doi:10.1002/jcc.20292
  • Bashford, D., & Case, D. A. (2000). Generalized born models of macromolecular solvation effects. Annual Review of Physical Chemistry, 51(1), 129–152. doi:10.1146/annurev.physchem.51.1.129
  • Berendsen, H. J. C., Postma, J. P. M., van Gunsteren, W. F., & Hermans, J. (1981). Interaction models for water in relation to protein hydration (pp. 331–342). Dordrecht: Springer Netherlands.
  • Beveridge, D. L., & DiCapua, F. M. (1989). Free energy via molecular simulation: Applications to chemical and biomolecular systems. Annual Review of Biophysics and Biophysical Chemistry, 18(1), 431–492. doi:10.1146/annurev.bb.18.060189.002243
  • Binkowski, T. A., Jiang, W., Roux, B., Anderson, W. F., & Joachimiak, A. (2014). Virtual high-throughput ligand screening. Methods in Molecular Biology, 1140, 251–261. doi:10.1007/978-1-4939-0354-2_19
  • Birks, J. (2006). Cholinesterase inhibitors for Alzheimer’s disease. Cochrane Database of Systematic Reviews, 1, CD005593.
  • Camacho, C. J., & Vajda, S. (2002). Protein–protein association kinetics and protein docking. Current Opinion in Structural Biology, 12(1), 36–40. doi:10.1016/S0959-440X(02)00286-5
  • Cheung, J., Rudolph, M. J., Burshteyn, F., Cassidy, M. S., Gary, E. N., Love, J., … Height, J. J. (2012). Structures of human acetylcholinesterase in complex with pharmacologically important ligands. Journal of Medicinal Chemistry, 55(22), 10282–10286. doi:10.1021/jm300871x
  • Chhabra, S., Sharma, P., & Ghoshal, N. (2007). A computational docking study for prediction of binding mode of diospyrin and derivatives: Inhibitors of human and leishmanial DNA topoisomerase-I. Bioorganic & Medicinal Chemistry Letters, 17(16), 4604–4612.
  • Desmond molecular dynamics program. (2017). New York.
  • Durdagi, S., Salmas, R. E., Stein, M., Yurtsever, M., & Seeman, P. (2016). Binding interactions of dopamine and apomorphine in D2High and D2Low states of human dopamine D2 receptor using computational and experimental techniques. ACS Chemical Neuroscience, 7(2), 185–195. doi:10.1021/acschemneuro.5b00271
  • Ellman, G. L., Courtney, K. D., Andres, V., & Feather-Stone, R. M. (1961). A new and rapid colorimetric determination of acetylcholinesterase activity. Biochemical Pharmacology, 7(2), 88–95. doi:10.1016/0006-2952(61)90145-9
  • Farlow, M. R., Miller, M. L., & Pejovic, V. (2008). Treatment options in Alzheimer’s disease: Maximizing benefit, managing expectations. Dementia and Geriatric Cognitive Disorders, 25(5), 408–422. doi:10.1159/000122962
  • Giacobini, E. (2004). Cholinesterase inhibitors: New roles and therapeutic alternatives. Pharmacological Research, 50(4), 433–440. doi:10.1016/j.phrs.2003.11.017
  • Glide, Version 5.7. (2011). New York: Schrodinger, LLC.
  • Gschwend, D. A., Good, A. C., & Kuntz, I. D. (1996). Molecular docking towards drug discovery. Journal of Molecular Recognition, 9(2), 175–186. doi:10.1002/(SICI)1099-1352(199603)9:2%3C175::AID-JMR260%3E3.0.CO;2-D
  • Hoover, W. G. (1985). Canonical dynamics: Equilibrium phase-space distributions. Physical Review A, 31(3), 1695–1697. doi:10.1103/PhysRevA.31.1695
  • Hopkins, F. G., & Cole, S. W. (1901). A contribution to the chemistry of proteids: Part I. A preliminary study of a hitherto undescribed product of tryptic digestion. The Journal of Physiology, 27(4–5), 418–428. doi:10.1113/jphysiol.1901.sp000880
  • Hou, T., Wang, J., Li, Y., & Wang, W. (2011a). Assessing the performance of the MM/PBSA and MM/GBSA methods. 1. The accuracy of binding free energy calculations based on molecular dynamics simulations. Journal of Chemical Information and Modeling, 51(1), 69–82. doi:10.1021/ci100275a
  • Hou, T., Wang, J., Li, Y., & Wang, W. (2011b). Assessing the performance of the molecular mechanics/Poisson Boltzmann surface area and molecular mechanics/generalized Born surface area methods. II. The accuracy of ranking poses generated from docking. Journal of Computational Chemistry, 32(5), 866–877. doi:10.1002/jcc.21666
  • Jacobson, M. P., Pincus, D. L., Rapp, C. S., Day, T. J., Honig, B., Shaw, D. E., & Friesner, R. A. (2004). A hierarchical approach to all-atom protein loop prediction. Proteins: Structure, Function and Bioinformatics, 55(2), 351–367. doi:10.1002/prot.10613
  • Jones, G., Willett, P., Glen, R. C., Leach, A. R., & Taylor, R. (1997). Development and validation of a genetic algorithm for flexible docking. Journal of Molecular Biology, 267(3), 727–748. doi:10.1006/jmbi.1996.0897
  • Kollman, P. A., Massova, I., Reyes, C., Kuhn, B., Huo, S., Chong, L., … Cheatham, T. E. (2000). Calculating structures and free energies of complex molecules: Combining molecular mechanics and continuum models. Accounts of Chemical Research, 33(12), 889–897. doi:10.1021/ar000033j
  • Krallinger, M., & Valencia, A. (2005). Text-mining and information-retrieval services for molecular biology. Genome Biology, 6(7), 224. doi:10.1186/gb-2005-6-7-224
  • Lane, R. M., Potkin, S. G., & Enz, A. (2006). Targeting acetylcholinesterase and butyrylcholinesterase in dementia. The International Journal of Neuropsychopharmacology, 9(01), 101–124. doi:10.1017/S1461145705005833
  • Li, J., Abel, R., Zhu, K., Cao, Y., Zhao, S., & Friesner, R. A. (2011). The VSGB 2.0 model: A next generation energy model for high resolution protein structure modeling. Proteins: Structure, Function, and Bioinformatics, 79(10), 2794–2812. doi:10.1002/prot.23106
  • Li, H., Robertson, A. D., Jensen, J. H. (2005). Very fast empirical prediction and rationalization of protein pKa values. Proteins, 61(4), 704–721.
  • Lin, P. J., & Neumann, P. J. (2013). The economics of mild cognitive impairment. Alzheimer’s and Dementia, 9(1), 58–62.
  • LigPrep. (2015). Schrödinger, LLC, New York, NY.
  • Ma, Z., & Tuckerman, M. (2010). Constant pressure ab initio molecular dynamics with discrete variable representation basis sets. Journal of Chemical Physics, 133(18), 184110. doi:10.1063/1.3499812
  • Maestro molecular modeling package. (2015). New York: Schrodinger.
  • MarvinSketch 18.30.0. (2018). Budapest, Hungary: ChemAxon.
  • Matthews, B. W. (1975). Comparison of the predicted and observed secondary structure of T4 phage lysozyme. Biochimica et Biophysica Acta (BBA), 405(2), 442–451. doi:10.1016/0005-2795(75)90109-9
  • McGaughey, G. B., Colussi, D., Graham, S. L., Lai, M. T., Munshi, S. K., Nantermet, P. G., … Holloway, M. K. (2007). Beta-secretase (BACE-1) inhibitors: Accounting for 10s loop flexibility using rigid active sites. Bioorganic & Medicinal Chemistry Letters, 17(4), 1117–1121. doi:10.1016/j.bmcl.2006.11.003
  • Meng, X. Y., Zhang, H. X., Mezei, M., & Cui, M. (2011). Molecular docking: A powerful approach for structure-based drug discovery. Current Computer-Aided Drug Design, 7(2), 146–157.
  • Motulsky, H. J. (2016). GraphPad statistics guide. GraphPad Software, San Diago.
  • Munoz-Torrero, D. (2008). Acetylcholinesterase inhibitors as disease-modifying therapies for Alzheimer’s disease. Current Medicinal Chemistry, 15(24), 2433–2455. doi:10.2174/092986708785909067
  • Ooms, F. (2000). Molecular modeling and computer aided drug design. Examples of their applications in medicinal chemistry. Current Medicinal Chemistry, 7(2), 141–158. doi:10.2174/0929867003375317
  • Ou-Yang, S. S., Lu, J. Y., Kong, X. Q., Liang, Z. J., Luo, C., & Jiang, H. (2012). Computational drug discovery. Acta Pharmacologica Sinica, 33(9), 1131–1140. doi:10.1038/aps.2012.109
  • Qiu, C., Kivipelto, M., & von Strauss, E. (2009). Epidemiology of Alzheimer’s disease: Occurrence, determinants, and strategies toward intervention. Dialogues in Clinical Neuroscience, 11(2), 111–128.
  • Raha, K., & Merz, K. M. (2004). A quantum mechanics-based scoring function: Study of zinc ion-mediated ligand binding. Journal of the American Chemical Society, 126(4), 1020–1021. doi:10.1021/ja038496i
  • Roy, S., Kumar, A., Baig, M. H., Masařík, M., & Provazník, I. (2015). Virtual screening, ADMET profiling, molecular docking and dynamics approaches to search for potent selective natural molecules based inhibitors against metallothionein-III to study Alzheimer’s disease. Methods, 83, 105–110. doi:10.1016/j.ymeth.2015.04.021
  • Protein Preparation, Version 2.5. (2011). New York: Schrodinger, LLC.
  • Salmas, R. E., Stein, M., Yurtsever, M., Seeman, P., Erol, I., Mestanoglu, M., & Durdagi, S. (2017). The signaling pathway of dopamine D2 receptor (D2R) activation using normal mode analysis (NMA) and the construction of pharmacophore models for D2R ligands. Journal of Biomolecular Structure and Dynamics, 35(9), 2040–2048. doi:10.1080/07391102.2016.1206487
  • Shelley, J. C., Cholleti, A., Frye, L. L., Greenwood, J. R., Timlin, M. R., & Uchimaya, M. (2007). Epik: A software program for pKa prediction and protonation state generation for drug-like molecules. Journal of Computer-Aided Molecular Design, 21(12), 681–691. doi:10.1007/s10822-007-9133-z
  • Subhani, S., Jayaraman, A., & Jamil, K. (2015). Homology modelling and molecular docking of MDR1 with chemotherapeutic agents in non-small cell lung cancer. Biomedicine & Pharmacotherapy, 71, 37–45. doi:10.1016/j.biopha.2015.02.009
  • Taber, D. F., & Tirunahari, P. K. (2011). Indole synthesis: A review and proposed classification. Tetrahedron, 67(38), 7195–7210.
  • Teipel, S., Heinsen, H., Amaro, E., Grinberg, L. T., Krause, B., Grothe, M., & Alzheimer’s Disease Neuroimaging Initiative (2014). Cholinergic basal forebrain atrophy predicts amyloid burden in Alzheimer’s disease. Neurobiology of Aging, 35(3), 482–491. doi:10.1016/j.neurobiolaging.2013.09.029
  • Thompson, P. A., Wright, D. E., Counsell, C. E., & Zajicek, J. (2012). Statistical analysis, trial design and duration in Alzheimer’s disease clinical trials: A review. International Psychogeriatrics, 24(5), 689–697. doi:10.1017/S1041610211001116
  • Todeschini, R., Ballabio, D., & Grisoni, F. (2016). Beware of unreliable Q2! A comparative study of regression metrics for predictivity assessment of QSAR models. Journal of Chemical Information and Modeling, 56(10), 1905–1913. doi:10.1021/acs.jcim.6b00277
  • Turner, P. R., O’Connor, K., Tate, W. P., & Abraham, W. C. (2003). Roles of amyloid precursor protein and its fragments in regulating neural activity, plasticity and memory. Progress in Neurobiology, 70(1), 1–32. doi:10.1016/S0301-0082(03)00089-3
  • Wolfe, M. S. (2001). Secretase targets for Alzheimer’s disease: Identification and therapeutic potential. Journal of Medicinal Chemistry, 44(13), 2039–2060. doi:10.1021/jm0004897
  • Xu, L., Sun, H., Li, Y., Wang, J., & Hou, T. (2013). Assessing the performance of MM/PBSA and MM/GBSA methods. 3. The impact of force fields and ligand charge models. The Journal of Physical Chemistry B, 117(28), 8408–8421. doi:10.1021/jp404160y
  • Zhang, X., Wong, S. E., & Lightstone, F. C. (2014). Toward fully automated high performance computing drug discovery: A massively parallel virtual screening pipeline for docking and molecular mechanics/generalized Born surface area rescoring to improve enrichment. Journal of Chemical Information and Modeling, 54(1), 324–337. doi:10.1021/ci4005145

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.