285
Views
2
CrossRef citations to date
0
Altmetric
Research Articles

Design of dipicolinic acid derivatives as New Delhi metallo-β-lactamase-1 inhibitors using a combined computational approach

, , , , , & show all
Pages 3384-3395 | Received 30 Apr 2019, Accepted 12 Aug 2019, Published online: 24 Sep 2019

References

  • Akhter, S., Lund, B. A., Ismael, A., Langer, M., Isaksson, J., Christopeit, T., … Bayer, A. (2018). A focused fragment library targeting the antibiotic resistance enzyme - Oxacillinase-48: Synthesis, structural evaluation and inhibitor design. European Journal of Medicinal Chemistry, 145, 634–648. doi: 10.1016/j.ejmech.2017.12.085
  • Bush, K., & Jacoby, G. A. (2010). Updated functional classification of beta-Lactamases. Antimicrobial Agents and Chemotherapy, 54(3), 969–976. doi: 10.1128/AAC.01009-09
  • Chen, A. Y., Thomas, P. W., Stewart, A. C., Bergstrom, A., Cheng, Z., Miller, C., … Cohen, S. M. (2017). Dipicolinic acid derivatives as inhibitors of New Delhi Metallo-beta-lactamase-1. Journal of Medicinal Chemistry, 60(17), 7267–7283. doi: 10.1021/acs.jmedchem.7b00407
  • Chen, C., Xiang, Y., Yang, K.-W., Zhang, Y., Wang, W.-M., Su, J.-P., … Liu, Y. (2018). A protein structure-guided covalent scaffold selectively targets the B1 and B2 subclass metallo-beta-lactamases. Chemical Communications, 54(38), 4802–4805. doi: 10.1039/C8CC01067F
  • Chou, K. C. (2004). Structural bioinformatics and its impact to biomedical science. Current Medicinal Chemistry, 11(16), 2105–2134. doi: 10.2174/0929867043364667
  • Chou, K. C., Wei, D. Q., Du, Q. S., Sirois, S., & Zhong, W. Z. (2006). Progress in computational approach to drug development against SARS. Current Medicinal Chemistry, 13(27), 3263–3270. doi: 10.2174/092986706778773077
  • Cramer, R. D. (2003). Topomer CoMFA: A design methodology for rapid lead optimization. Journal of Medicinal Chemistry, 46(3), 374–388. doi: 10.1021/jm020194o
  • Cramer, R. D., Jilek, R. J., Guessregen, S., Clark, S. J., Wendt, B., & Clark, R. D. (2004). Lead hopping”. Validation of topomer similarity as a superior predictor of similar biological activities. Journal of Medicinal Chemistry, 47(27), 6777–6791. doi: 10.1021/jm049501b
  • Cramer, R. D., Patterson, D. E., & Bunce, J. D. (1988). Comparative molecular field analysis (CoMFA). 1. Effect of shape on binding of steroids to carrier proteins. Journal of the American Chemical Society, 110(18), 5959–5967. doi: 10.1021/ja00226a005
  • Drawz, S. M., & Bonomo, R. A. (2010). Three decades of beta-Lactamase inhibitors. Clinical Microbiology Reviews, 23(1), 160–201. doi: 10.1128/CMR.00037-09
  • Fair, R. J., & Tor, Y. (2014). Antibiotics and bacterial resistance in the 21st century. Perspect Medicin Chem, 6, PMC.S14459–64. doi: 10.4137/PMC.S14459
  • Frere, J. M., Sauvage, E., & Kerff, F. (2016). From “an enzyme able to destroy penicillin” to carbapenemases: 70 Years of beta-lactamase misbehaviour. Current Drug Targets, 17(9), 974–982. doi: 10.2174/1389450116666151001112859
  • Gonzalez, M. M., Kosmopoulou, M., Mojica, M. F., Castillo, V., Hinchliffe, P., Pettinati, I., … Vila, A. J. (2015). Bisthiazolidines: A substrate-mimicking scaffold as an inhibitor of the NDM-1 Carbapenemase. ACS Infectious Diseases, 1(11), 544–554. doi: 10.1021/acsinfecdis.5b00046
  • Gordon, E. M., Duncton, M. A. J., & Gallop, M. A. (2018). Orally absorbed derivatives of the beta-lactamase inhibitor avibactam. design of novel prodrugs of sulfate containing drugs. Journal of Medicinal Chemistry, 61(22), 10340–10344. doi: 10.1021/acs.jmedchem.8b01389
  • Green, V. L., Verma, A., Owens, R. J., Phillips, S. E. V., & Carr, S. B. (2011). Structure of New Delhi metallo-beta-lactamase 1 (NDM-1). Acta Crystallographica Section F Structural Biology and Crystallization Communications, 67(10), 1160–1164. doi: 10.1107/S1744309111029654
  • Guo, Y., Wang, J., Niu, G., Shui, W., Sun, Y., Zhou, H., … Rao, Z. (2011). A structural view of the antibiotic degradation enzyme NDM-1 from a superbug. Protein & Cell, 2(5), 384–394. doi: 10.1007/s13238-011-1055-9
  • Hall, B. G., & Barlow, M. (2005). Revised Ambler classification of beta-lactamases. Journal of Antimicrobial Chemotherapy, 55(6), 1050–1051. doi: 10.1093/jac/dki130
  • Hecker, S. J., Reddy, K. R., Totrov, M., Hirst, G. C., Lomovskaya, O., Griffith, D. C., … Dudley, M. N. (2015). Discovery of a Cyclic Boronic Acid beta-Lactamase Inhibitor (RPX7009) with Utility vs Class A Serine Carbapenemases. Journal of Medicinal Chemistry, 58(9), 3682–3692. doi: 10.1021/acs.jmedchem.5b00127
  • Huang, D. D., Liu, Y. L., Shi, B. Z., Li, Y. T., Wang, G. X., & Liang, G. Z. (2013). Comprehensive 3D-QSAR and binding mode of BACE-1 inhibitors using R-group search and molecular docking. Journal of Molecular Graphics and Modelling, 45, 65–83. doi: 10.1016/j.jmgm.2013.08.003
  • Jin, W. B., Xu, C., Cheng, Q., Qi, X. L., Gao, W., Zheng, Z., … Chan, K.-F. (2018). Investigation of synergistic antimicrobial effects of the drug combinations of meropenem and 1,2-benzisoselenazol-3(2H)-one derivatives on carbapenem-resistant Enterobacteriaceae producing NDM-1. European Journal of Medicinal Chemistry, 155, 285–302. doi: 10.1016/j.ejmech.2018.06.007
  • King, D. T., Worrall, L. J., Gruninger, R., & Strynadka, N. C. (2012). New Delhi metallo-beta-lactamase: Structural insights into beta-lactam recognition and inhibition. Journal of the American Chemical Society, 134(28), 11362–11365. doi: 10.1021/ja303579d
  • Laskowski, R. A., & Swindells, M. B. (2011). LigPlot+: Multiple ligand–protein interaction diagrams for drug discovery. Journal of Chemical Information and Modeling, 51(10), 2778–2786. doi: 10.1021/ci200227u
  • Li, N., Xu, Y., Xia, Q., Bai, C., Wang, T., Wang, L., … Chen, Y. (2014). Simplified captopril analogues as NDM-1 inhibitors. Bioorganic & Medicinal Chemistry Letters, 24(1), 386–389. doi: 10.1016/j.bmcl.2013.10.068
  • Morrill, H. J., Pogue, J. M., Kaye, K. S., & LaPlante, K. L. (2015). Treatment options for carbapenem-resistant Enterobacteriaceae infections. Open Forum Infectious Diseases, 2(2):ofv050. doi: 10.1093/ofid/ofv050
  • Morris, G. M., Huey, R., Lindstrom, W., Sanner, M. F., Belew, R. K., Goodsell, D. S., & Olson, A. J. (2009). AutoDock4 and AutoDockTools4: Automated docking with selective receptor flexibility. Journal of Computational Chemistry, 30(16), 2785–2791. doi: 10.1002/jcc.21256
  • Palzkill, T. (2013). Metallo-beta-lactamase structure and function. Annals of the New York Academy of Sciences, 1277, 91–104. doi: 10.1111/j.1749-6632.2012.06796.x
  • Poirel, L., Lagrutta, E., Taylor, P., Pham, J., & Nordmann, P. (2010). Emergence of metallo-beta-lactamase NDM-1-producing multidrug-resistant Escherichia coli in Australia. Antimicrobial Agents and Chemotherapy, 54(11), 4914–4916. doi: 10.1128/AAC.00878-10
  • Spyrakis, F., Celenza, G., Marcoccia, F., Santucci, M., Cross, S., Bellio, P., … Tondi, D. (2018). Structure-based virtual screening for the discovery of novel inhibitors of New Delhi Metallo-beta-lactamase-1. Acs Medicinal Chemistry Letters, 9(1), 45–50. doi: 10.1021/acsmedchemlett.7b00428
  • Tassoni, R., Blok, A., Pannu, N. S., & Ubbink, M. (2019). New Conformations of acylation adducts of inhibitors of beta-Lactamase from Mycobacterium tuberculosis. Biochemistry, 58(7), 997–1009. doi: 10.1021/acs.biochem.8b01085
  • Tondi, D., Cross, S., Venturelli, A., Costi, M. P., Cruciani, G., & Spyrakis, F. (2016). Decoding the Structural basis for carbapenem hydrolysis by class a beta-lactamases: Fishing for a pharmacophore. Current Drug Targets, 17(9), 983–1005. doi: 10.2174/1389450116666151001104448
  • Tong, J. B., Bai, M., & Zhao, X. (2016). 3D-QSAR and docking studies of HIV-1 protease inhibitors using R-group search and Surflex-dock. Medicinal Chemistry Research, 25(11), 2619–2630. doi: 10.1007/s00044-016-1701-0
  • Wallace, A. C., Laskowski, R. A., & Thornton, J. M. (1995). LIGPLOT: A program to generate schematic diagrams of protein–ligand interactions. "Protein Engineering, Design and Selection"", 8(2), 127–134. doi: 10.1093/protein/8.2.127
  • Walsh, T. R., Toleman, M. A., Poirel, L., & Nordmann, P. (2005). Metallo-beta-lactamases: The quiet before the storm? Clinical Microbiology Reviews, 18(2), 306. +. doi: 10.1128/CMR.18.2.306-325.2005
  • Yang, Y., Rasmussen, B. A., & Bush, K. (1992). Biochemical characterization of the metallo-beta-lactamase CcrA from Bacteroides fragilis TAL3636. Antimicrobial Agents and Chemotherapy, 36(5), 1155–1157. doi: 10.1128/AAC.36.5.1155
  • Yu, Z.-J., Liu, S., Zhou, S., Li, H., Yang, F., Yang, L.-L., … Li, G.-B. (2018). Virtual target screening reveals rosmarinic acid and salvianolic acid A inhibiting metallo- and serine-beta-lactamases. Bioorganic & Medicinal Chemistry Letters, 28(6), 1037–1042. doi: 10.1016/j.bmcl.2018.02.025
  • Zhou, J. Y., Stapleton, P., Haider, S., & Healy, J. (2018). Boronic acid inhibitors of the class A β-lactamase KPC-2 . Bioorganic &Amp; Medicinal Chemistry, 26(11), 2921–2927 doi: 10.1016/j.bmc.2018.04.05c.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.