203
Views
7
CrossRef citations to date
0
Altmetric
Research Articles

Effects of natural compounds on conformational properties and hairpin formation of amyloid-β42 monomer: docking and molecular dynamics simulation study

, , , &
Pages 3371-3383 | Received 14 Apr 2019, Accepted 10 Aug 2019, Published online: 15 Sep 2019

References

  • Agrawal, N., & Skelton, A. A. (2017). Binding of 12-crown-4 with Alzheimer’s Aβ40 and Aβ42 monomers and its effect on their conformation: Insight from molecular dynamics simulations. Molecular Pharmaceutics, 15(1), 289–299. doi: 10.1021/acs.molpharmaceut.7b00966
  • Ahmed, M., Davis, J., Aucoin, D., Sato, T., Ahuja, S., Aimoto, S., … Smith, S. O. (2010). Structural conversion of neurotoxic amyloid-β 1-42 oligomers to fibrils. Nature Structural & Molecular Biology, 17(5), 561. doi: 10.1038/nsmb.1799
  • Baweja, L., Balamurugan, K., Subramanian, V., & Dhawan, A. (2015). Effect of graphene oxide on the conformational transitions of amyloid beta peptide: A molecular dynamics simulation study. Journal of Molecular Graphics and Modelling, 61, 175–185. doi: 10.1016/j.jmgm.2015.07.007
  • Bera, S., Korshavn, K., Kar, R., Lim, M. H., Ramamoorthy, A., & Bhunia, A. (2017). Biophysical insights into the membrane interaction of the core amyloid-forming Aβ40 fragment K16-K28 and its role in the pathogenesis of Alzheimer's disease. Biophysical Journal, 112(3), 388a. doi: 10.1016/j.bpj.2016.11.2107
  • Berendsen, H. J., Postma, J. V., van Gunsteren, W. F., DiNola, A., & Haak, J. (1984). Molecular dynamics with coupling to an external bath. The Journal of Chemical Physics, 81(8), 3684–3690. doi: 10.1063/1.448118
  • Berhanu, W. M., & Masunov, A. E. (2015). Atomistic mechanism of polyphenol amyloid aggregation inhibitors: Molecular dynamics study of curcumin, exifone, and myricetin interaction with the segment of tau peptide oligomer. Journal of Biomolecular Structure and Dynamics, 33(7), 1399–1411. doi: 10.1080/07391102.2014.951689
  • Berman, H. M., Westbrook, J., Feng, Z., Gilliland, G., Bhat, T. N., Weissig, H., … Bourne, P. E. (2000). The protein data bank. Nucleic Acids Research, 28(1), 235–242. doi: 10.1093/nar/28.1.235
  • Boopathi, S., & Kolandaivel, P. (2014). Role of zinc and copper metal ions in amyloid β-peptides Aβ 1-40 and Aβ 1-42 aggregation. RSC Advances, 4(73), 38951–38965. doi: 10.1039/C4RA05390G
  • Boopathi, S., & Kolandaivel, P. (2015). Study on the inter- and intra-peptide salt-bridge mechanism of Aβ 23-28 oligomer interaction with small molecules: QM/MM method. Molecular Biosystems, 11(7), 2031–2041. doi: 10.1039/C5MB00066A
  • Bussi, G., Donadio, D., & Parrinello, M. (2007). Canonical sampling through velocity rescaling. The Journal of Chemical Physics, 126(1), 014101. doi: 10.1063/1.2408420
  • Cheng, B., Liu, X., Gong, H., Huang, L., Chen, H., Zhang, X., … Jiao, L. (2011). Coffee components inhibit amyloid formation of human islet amyloid polypeptide in vitro: Possible link between coffee consumption and diabetes mellitus. Journal of Agricultural and Food Chemistry, 59(24), 13147–13155. doi: 10.1021/jf201702h
  • Choi, D.-Y., Lee, Y.-J., Hong, J. T., & Lee, H.-J. (2012). Antioxidant properties of natural polyphenols and their therapeutic potentials for Alzheimer's disease. Brain Research Bulletin, 87(2–3), 144–153. doi: 10.1016/j.brainresbull.2011.11.014
  • Cukalevski, R., Boland, B., Frohm, B., Thulin, E., Walsh, D., & Linse, S. (2012). Role of aromatic side chains in amyloid β-protein aggregation. ACS Chemical Neuroscience, 3(12), 1008–1016. doi: 10.1021/cn300073s
  • Darden, T., York, D., & Pedersen, L. (1993). Particle mesh Ewald: An N⋅ log (N) method for Ewald sums in large systems. The Journal of Chemical Physics, 98(12), 10089–10092. doi: 10.1063/1.464397
  • Das, P., Kang, S.-G., Temple, S., & Belfort, G. (2014). Interaction of amyloid inhibitor proteins with amyloid beta peptides: Insight from molecular dynamics simulations. PLoS One, 9(11), e113041. doi: 10.1371/journal.pone.0113041
  • Das, S., Stark, L., Musgrave, I. F., Pukala, T., & Smid, S. D. (2016). Bioactive polyphenol interactions with β amyloid: A comparison of binding modelling, effects on fibril and aggregate formation and neuroprotective capacity. Food & Function, 7(2), 1138–1146. doi: 10.1039/C5FO01281C
  • DeLano, W. L. (2002). The PyMOL molecular graphics system. Retrieved from http://pymol.org
  • DeToma, A. S., Salamekh, S., Ramamoorthy, A., & Lim, M. H. (2012). Misfolded proteins in Alzheimer's disease and type II diabetes. Chemical Society Reviews, 41(2), 608–621. doi: 10.1039/C1CS15112F
  • Dong, M., Li, H., Hu, D., Zhao, W., Zhu, X., & Ai, H. (2016). Molecular dynamics study on the inhibition mechanisms of drugs CQ1-3 for Alzheimer amyloid-β40 aggregation induced by Cu2+. ACS Chemical Neuroscience, 7(5), 599–614. doi: 10.1021/acschemneuro.5b00343
  • Du, W.-J., Guo, J.-J., Gao, M.-T., Hu, S.-Q., Dong, X.-Y., Han, Y.-F., … Sun, Y. (2015). Brazilin inhibits amyloid β-protein fibrillogenesis, remodels amyloid fibrils and reduces amyloid cytotoxicity. Scientific Reports, 5(1), 7992. doi: 10.1038/srep07992
  • Fan, H.-M., Gu, R.-X., Wang, Y.-J., Pi, Y.-L., Zhang, Y.-H., Xu, Q., & Wei, D.-Q. (2015). Destabilization of Alzheimer’s Aβ42 protofibrils with a novel drug candidate wgx-50 by molecular dynamics simulations. The Journal of Physical Chemistry B, 119(34), 11196–11202. doi: 10.1021/acs.jpcb.5b03116
  • Frishman, D., & Argos, P. (1995). Knowledge‐based protein secondary structure assignment. Proteins: Structure, Function, and Genetics, 23(4), 566–579. doi: 10.1002/prot.340230412
  • Hess, B. (2008). P-LINCS: A parallel linear constraint solver for molecular simulation. Journal of Chemical Theory and Computation, 4(1), 116–122. doi: 10.1021/ct700200b
  • Hou, S., Gu, R.-X., & Wei, D.-Q. (2017). Inhibition of β-amyloid channels with a drug candidate wgx-50 revealed by molecular dynamics simulations. Journal of Chemical Information and Modeling, 57(11), 2811–2821. doi: 10.1021/acs.jcim.7b00452
  • Humphrey, W., Dalke, A., & Schulten, K. (1996). VMD: Visual molecular dynamics. Journal of Molecular Graphics, 14(1), 33–38. doi: 10.1016/0263-7855(96)00018-5
  • Jayasena, T., Poljak, A., Smythe, G., Braidy, N., Münch, G., & Sachdev, P. (2013). The role of polyphenols in the modulation of sirtuins and other pathways involved in Alzheimer's disease. Ageing Research Reviews, 12(4), 867–883. doi: 10.1016/j.arr.2013.06.003
  • Kim, S., Thiessen, P. A., Bolton, E. E., Chen, J., Fu, G., Gindulyte, A., … Shoemaker, B. A. (2016). PubChem substance and compound databases. Nucleic Acids Research, 44(D1), D1202–D1213. doi: 10.1093/nar/gkv951
  • Korolev, I. O. (2014). Alzheimer’s disease: A clinical and basic science review. Medical Student Research Journal, 4, 24–33.
  • Kumar, A., Srivastava, S., Tripathi, S., Singh, S. K., Srikrishna, S., & Sharma, A. (2016). Molecular insight into amyloid oligomer destabilizing mechanism of flavonoid derivative 2-(4′ benzyloxyphenyl)-3-hydroxy-chromen-4-one through docking and molecular dynamics simulations. Journal of Biomolecular Structure and Dynamics, 34(6), 1252–1263. doi: 10.1080/07391102.2015.1074943
  • Kumari, R., Kumar, R., Consortium, O. S. D. D., & Lynn, A. (2014). g_mmpbsa-a GROMACS tool for high-throughput MM-PBSA calculations. Journal of Chemical Information and Modeling, 54(7), 1951–1962. doi: 10.1021/ci500020m
  • Lemkul, J. A., & Bevan, D. R. (2010). Destabilizing Alzheimer’s Aβ42 protofibrils with morin: Mechanistic insights from molecular dynamics simulations. Biochemistry, 49(18), 3935–3946. doi: 10.1021/bi1000855
  • Liu, F.-F., Dong, X.-Y., He, L., Middelberg, A. P., & Sun, Y. (2011). Molecular insight into conformational transition of amyloid β-peptide 42 inhibited by (−)-epigallocatechin-3-gallate probed by molecular simulations. The Journal of Physical Chemistry B, 115(41), 11879–11887. doi: 10.1021/jp202640b
  • Ma, B., & Nussinov, R. (2002). Molecular dynamics simulations of alanine rich β‐sheet oligomers: Insight into amyloid formation. Protein Science, 11(10), 2335–2350. doi: 10.1110/ps.4270102
  • Maity, S., Hashemi, M., & Lyubchenko, Y. L. (2017). Nano-assembly of amyloid β peptide: Role of the hairpin fold. Scientific Reports, 7(1), 2344doi: 10.1038/s41598-017-02454-0
  • Morris, G. M., Huey, R., Lindstrom, W., Sanner, M. F., Belew, R. K., Goodsell, D. S., & Olson, A. J. (2009). AutoDock4 and AutoDockTools4: Automated docking with selective receptor flexibility. Journal of Computational Chemistry, 30(16), 2785–2791. doi: 10.1002/jcc.21256
  • Omar, S. H. (2017). Biophenols pharmacology against the amyloidogenic activity in Alzheimer’s disease. Biomedicine & Pharmacotherapy, 89, 396–413. doi: 10.1016/j.biopha.2017.02.051
  • Ono, K., Li, L., Takamura, Y., Yoshiike, Y., Zhu, L., Han, F., … Nishijo, H. (2012). Phenolic compounds prevent amyloid β-protein oligomerization and synaptic dysfunction by site-specific binding. Journal of Biological Chemistry, 287(18), 14631–14643. doi: 10.1074/jbc.M111.325456
  • Oostenbrink, C., Villa, A., Mark, A. E., & Van Gunsteren, W. F. (2004). A biomolecular force field based on the free enthalpy of hydration and solvation: The GROMOS force‐field parameter sets 53A5 and 53A6. Journal of Computational Chemistry, 25(13), 1656–1676. doi: 10.1002/jcc.20090
  • Porat, Y., Abramowitz, A., & Gazit, E. (2006). Inhibition of amyloid fibril formation by polyphenols: Structural similarity and aromatic interactions as a common inhibition mechanism. Chemical Biology Drug Design, 67(1), 27–37. doi: 10.1111/j.1747-0285.2005.00318.x
  • Pronk, S., Páll, S., Schulz, R., Larsson, P., Bjelkmar, P., Apostolov, R., … & Van Der Spoel, D. (2013). GROMACS 4.5: A high-throughput and highly parallel open source molecular simulation toolkit. Bioinformatics, 29(7), 845–854. doi: 10.1093/bioinformatics/btt055
  • SchuÈttelkopf, A. W., & Van Aalten, D. M. (2004). PRODRG: A tool for high-throughput crystallography of protein-ligand complexes. Acta Crystallographica Section D Biological Crystallography, 60(8), 1355–1363. doi: 10.1107/S0907444904011679
  • Sevigny, J., Chiao, P., Bussière, T., Weinreb, P. H., Williams, L., Maier, M., … Ling, Y. (2016). The antibody aducanumab reduces Aβ plaques in Alzheimer’s disease. Nature, 537(7618), 50–56. doi: 10.1038/nature19323
  • Sharma, B., Kalita, S., Paul, A., Mandal, B., & Paul, S. (2016). The role of caffeine as an inhibitor in the aggregation of amyloid forming peptides: A unified molecular dynamics simulation and experimental study. RSC Advances, 6(82), 78548–78558. doi: 10.1039/C6RA17602J
  • Shuaib, S., & Goyal, B. (2018). Scrutiny of the mechanism of small molecule inhibitor preventing conformational transition of amyloid-β42 monomer: Insights from molecular dynamics simulations. Journal of Biomolecular Structure and Dynamics, 36(3), 663–678. doi: 10.1080/07391102.2017.1291363
  • Thinakaran, G., & Koo, E. H. (2008). Amyloid precursor protein trafficking, processing, and function. Journal of Biological Chemistry, 283(44), 29615–29619. doi: 10.1074/jbc.R800019200
  • Viet, M. H., Siposova, K., Bednarikova, Z., Antosova, A., Nguyen, T. T., Gazova, Z., & Li, M. S. (2015). In silico and in vitro study of binding affinity of tripeptides to amyloid β fibrils: Implications for Alzheimer’s disease. The Journal of Physical Chemistry B, 119(16), 5145–5155. doi: 10.1021/acs.jpcb.5b00006
  • Wang, L., Zeng, R., Pang, X., Gu, Q., & Tan, W. (2015). The mechanisms of flavonoids inhibiting conformational transition of amyloid-β 42 monomer: A comparative molecular dynamics simulation study. RSC Advances, 5(81), 66391–66402. doi: 10.1039/C5RA12328C
  • Weinreb, O., Mandel, S., Amit, T., & Youdim, M. B. (2004). Neurological mechanisms of green tea polyphenols in Alzheimer's and Parkinson's diseases. The Journal of Nutritional Biochemistry, 15(9), 506–516. doi: 10.1016/j.jnutbio.2004.05.002
  • Xiao, Y., Ma, B., McElheny, D., Parthasarathy, S., Long, F., Hoshi, M., … Ishii, Y. (2015). Aβ (1-42) fibril structure illuminates self-recognition and replication of amyloid in Alzheimer's disease. Nature Structural & Molecular Biology, 22(6), 499. doi: 10.1038/nsmb.2991
  • Xie, L., Luo, Y., Lin, D., Xi, W., Yang, X., & Wei, G. (2014). The molecular mechanism of fullerene-inhibited aggregation of Alzheimer's β-amyloid peptide fragment. Nanoscale, 6(16), 9752–9762. doi: 10.1039/C4NR01005A
  • Zhang, T., Tian, Y., Li, Z., Liu, S., Hu, X., Yang, Z., … Zhang, J. (2017). Molecular dynamics study to investigate the dimeric structure of the full-length α-synuclein in aqueous solution. Journal of Chemical Information and Modeling, 57(9), 2281–2293. doi: 10.1021/acs.jcim.7b00210
  • Zhuang, W., Sgourakis, N. G., Li, Z., Garcia, A. E., & Mukamel, S. (2010). Discriminating early stage Aβ42 monomer structures using chirality-induced 2DIR spectroscopy in a simulation study. Proceedings of the National Academy of Sciences, 107(36), 15687–15692. doi: 10.1073/pnas.1002131107

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.