799
Views
39
CrossRef citations to date
0
Altmetric
Research Articles

Structural insights of metallo-beta-lactamase revealed an effective way of inhibition of enzyme by natural inhibitors

, , , , &
Pages 3757-3771 | Received 08 Feb 2019, Accepted 27 Aug 2019, Published online: 23 Sep 2019

References

  • Anandakrishnan, R., Aguilar, B., & Onufriev, A. V. (2012). H++ 3.0: Automating pK prediction and the preparation of biomolecular structures for atomistic molecular modeling and simulations. [Research Support, N.I.H., Extramural]. Nucleic Acids Research, 40(W1, Web Server issue), W537–541. doi:10.1093/nar/gks375
  • Balasubramaniam, M., Ayyadevara, S., & Shmookler Reis, R. J. (2018). Structural insights into pro-aggregation effects of C. elegans CRAM-1 and its human ortholog SERF2. Scientific Reports, 8(1), 14891. doi:10.1038/s41598-018-33143-1
  • Bassetti, M., Ginocchio, F., Mikulska, M., Taramasso, L., & Giacobbe, D. R. (2011). Will new antimicrobials overcome resistance among Gram-negatives? Expert Review of anti-Infective Therapy, 9(10), 909–922. doi:10.1586/eri.11.107
  • Berendsen, H. J., van der Spoel, D., & van Drunen, R. (1995). GROMACS: A message-passing parallel molecular dynamics implementation. Computer Physics Communications, 91(1–3), 43–56. doi:10.1016/0010-4655(95)00042-E
  • Bohnert, T., & Prakash, C. (2011). ADME profiling in drug discovery and development: An overview. In Encyclopedia of drug metabolism and interactions (pp. 1–42). New York: Wiley.
  • Bonati, A. (1980). Medicinal plants and industry. Journal of Ethnopharmacology, 2(2), 167–171. doi:10.1016/0378-8741(80)90011-2
  • Brem, J., van Berkel, S. S., Zollman, D., Lee, S. Y., Gileadi, O., McHugh, P. J., … Schofield, C. J. (2016). Structural basis of metallo-beta-lactamase inhibition by captopril stereoisomers [Research Support, Non-U.S. Gov’t]. Antimicrobial Agents and Chemotherapy, 60(1), 142–150. doi:10.1128/AAC.01335-15
  • Brooks, B. R., Brooks, C. L., 3rd, Mackerell, A. D., Jr., Nilsson, L., Petrella, R. J., Roux, B., … Karplus, M. (2009). CHARMM: The biomolecular simulation program. [Research Support, N.I.H., Extramural Research Support, N.I.H., Intramural Research Support, Non-U.S. Gov't Research Support, U.S. Gov’t, Non-P.H.S. Review]. Journal of Computational Chemistry, 30(10), 1545–1614. doi:10.1002/jcc.21287
  • Brooks, B. R., Bruccoleri, R. E., Olafson, B. D., States, D. J., Swaminathan, S. A., & Karplus, M. (1983). CHARMM: A program for macromolecular energy, minimization, and dynamics calculations. Journal of Computational Chemistry, 4(2), 187–217. doi:10.1002/jcc.540040211
  • Bush, K. (2018). Past and present perspectives on beta-lactamases. Antimicrobial Agents and Chemotherapy, 62(10), e01076. doi:10.1128/AAC.01076-18
  • Bush, K., & Jacoby, G. A. (2010). Updated functional classification of beta-lactamases. Antimicrobial Agents and Chemotherapy, 54(3), 969–976. doi:10.1128/AAC.01009-09
  • Chovancova, E., Pavelka, A., Benes, P., Strnad, O., Brezovsky, J., Kozlikova, B., … Medek, P. (2012). CAVER 3.0: A tool for the analysis of transport pathways in dynamic protein structures. PLoS Computational Biology, 8(10), e1002708. p doi:10.1371/journal.pcbi.1002708
  • Clifford, M. N., & Wight, J. (1976). The measurement of feruloylquinic acids and caffeoylquinic acids in coffee beans. Development of the technique and its preliminary application to green coffee beans. Journal of the Science of Food and Agriculture, 27(1), 73–84. doi:10.1002/jsfa.2740270112
  • Dammalli, M., Chandramohan, V., Biradar, M. I., Nagaraju, N., & Gangadharappa, B. S. (2014). In silico analysis and identification of novel inhibitor for new H1N1 swine influenza virus. Asian Pacific Journal of Tropical Disease, 4, S635–S640. doi:10.1016/S2222-1808(14)60694-0
  • Douglas, R. G., Nandekar, P., Aktories, J. E., Kumar, H., Weber, R., Sattler, J. M., … Frischknecht, F. (2018). Inter-subunit interactions drive divergent dynamics in mammalian and Plasmodium actin filaments [Research Support, Non-U.S]. PLOS Biology, 16(7), e2005345. doi:10.1371/journal.pbio.2005345
  • Drawz, S. M., & Bonomo, R. A. (2010). Three decades of beta-lactamase inhibitors. [Research Support, N.I.H., Extramural Research Support, Non-U.S. Gov’t Research Support, U.S. Gov't, Non-P.H.S.Review]. Clinical Microbiology Reviews, 23(1), 160–201. doi:10.1128/CMR.00037-09
  • Du, X., Li, Y., Xia, Y. L., Ai, S. M., Liang, J., Sang, P., … Liu, S. Q. (2016). Insights into protein-ligand interactions: Mechanisms, models, and methods [Research Support, Non-U.S. Gov’t Review]. International Journal of Molecular Science, 17(2), E144. doi:10.3390/ijms17020144
  • Eiamphungporn, W., Schaduangrat, N., Malik, A. A., & Nantasenamat, C. (2018). Tackling the Antibiotic resistance caused by class A beta-lactamases through the use of beta-lactamase inhibitory protein. International Journal of Molecular Science, 19(8), E2222. doi:10.3390/ijms19082222
  • Essmann, U., Perera, L., Berkowitz, M. L., Darden, T., Lee, H., & Pedersen, L. G. (1995). A smooth particle mesh Ewald method. The Journal of Chemical Physics, 103(19), 8577–8593. doi:10.1063/1.470117
  • Eswar, N., Webb, B., Marti‐Renom, M. A., Madhusudhan, M., Eramian, D., Shen, M. Y., … Sali, A. (2006). Comparative protein structure modeling using modeller. Current Protocols in Bioinformatics, 15(1), 5.6. 1–5.6. 30. doi:10.1002/0471250953.bi0506s15
  • Fair, R. J., & Tor, Y. (2014). Antibiotics and bacterial resistance in the 21st century. Perspectives in Medicinal Chemistry, 6, 25–64. doi:10.4137/PMC.S14459
  • Friesner, R. A., Murphy, R. B., Repasky, M. P., Frye, L. L., Greenwood, J. R., Halgren, T. A., … Mainz, D. T. (2006). Extra precision glide: Docking and scoring incorporating a model of hydrophobic enclosure for protein − ligand complexes. Journal of Medicinal Chemistry, 49(21), 6177–6196. doi:10.1021/jm051256o
  • Heinz, U., Bauer, R., Wommer, S., Meyer-Klaucke, W., Papamichaels, C., Bateson, J., & Adolph, H. W. (2003). Coordination geometries of metal ions in d- or l-captopril-inhibited metallo-beta-lactamases. [Research Support, Non-U.S. Gov't]. Journal of Biological Chemistry, 278(23), 20659–20666. doi:10.1074/jbc.M212581200
  • Hess, B., Bekker, H., Berendsen, H. J., & Fraaije, J. G. (1997). LINCS: A linear constraint solver for molecular simulations. Journal of Computational Chemistry, 18(12), 1463–1472. doi:10.1002/(SICI)1096-987X(199709)18:12<1463::AID-JCC4>3.0.CO;2-H
  • Hess, B., Kutzner, C., van der Spoel, D., & Lindahl, E. (2008). GROMACS 4: Algorithms for highly efficient, load-balanced, and scalable molecular simulation. Journal of Chemical Theory and Computation, 4(3), 435–447. doi:10.1021/ct700301q
  • Hughes, D., & Karlen, A. (2014). Discovery and preclinical development of new antibiotics. [Review]. Upsala Journal of Medical Sciences, 119(2), 162–169. doi:10.3109/03009734.2014.896437
  • Humphrey, W., Dalke, A., & Schulten, K. (1996). VMD: Visual molecular dynamics. [Research Support, Non-U.S. Gov't Research Support, U.S. Gov't, Non-P.H.S. Research Support, U.S. Gov't, P.H.S.]. Journal of Molecular Graphics, 14(1), 33–38, 27-38.
  • Jurcik, A., Bednar, D., Byska, J., Marques, S. M., Furmanova, K., Daniel, L., … Kozlikova, B. (2018). CAVER Analyst 2.0: Analysis and visualization of channels and tunnels in protein structures and molecular dynamics trajectories. [Research Support, Non-U.S. Gov't]. Bioinformatics, 34(20), 3586–3588. doi:10.1093/bioinformatics/bty386
  • Kanan, T., Kanan, D., Erol, I., Yazdi, S., Stein, M., & Durdagi, S. (2019). Targeting the NF-kappaB/IkappaBalpha complex via fragment-based E-pharmacophore virtual screening and binary QSAR models. Journal of Molecular Graphics and Modelling, 86, 264–277. doi:10.1016/j.jmgm.2018.09.014
  • Khan, A. U., Ali, A.,  Danishuddin, Srivastava, G., & Sharma, A. (2017). Potential inhibitors designed against NDM-1 type metallo-beta-lactamases: An attempt to enhance efficacies of antibiotics against multi-drug-resistant bacteria. [Research Support, Non-U.S. Gov't]. Scientific Reports, 7(1)p, 9207. doi:10.1038/s41598-017-09588-1
  • Khanna, A., Khanna, M., & Aggarwal, A. (2013). Serratia marcescens: A rare opportunistic nosocomial pathogen and measures to limit its spread in hospitalized patients. Journal of Clinical and Diagnostic Research, 7(2), 243–246. doi:10.7860/JCDR/2013/5010.2737
  • Kim, S., Thiessen, P. A., Bolton, E. E., Chen, J., Fu, G., Gindulyte, A., … Bryant, S. H. (2016). PubChem substance and compound databases. [Research Support, N.I.H., Intramural]. Nucleic Acids Research, 44(D1), D1202–1213. doi:10.1093/nar/gkv951
  • Kong, K. F., Schneper, L., & Mathee, K. (2010). Beta-lactam antibiotics: From antibiosis to resistance and bacteriology. [Research Support, N.I.H., Extramural Research Support, Non-U.S. Gov't Review]. APMIS, 118(1), 1–36. doi:10.1111/j.1600-0463.2009.02563.x
  • Kumar, H., Shah, A., & Sobhia, M. E. (2012). Novel insights into the structural requirements for the design of selective and specific aldose reductase inhibitors. Journal of Molecular Modeling, 18(5), 1791–1799. doi:10.1007/s00894-011-1195-0
  • Kumari, R., Kumar, R., & Lynn, A. (2014). g_mmpbsa: A GROMACS tool for high-throughput MM-PBSA calculations. [Research Support, Non-U.S. Gov't]. Journal of Chemical Information and Modeling, 54(7), 1951–1962. doi:10.1021/ci500020m
  • Lindahl, E., Hess, B., & Van Der Spoel, D. (2001). GROMACS 3.0: A package for molecular simulation and trajectory analysis. Journal of Molecular Modeling, 7(8), 306–317. doi:10.1007/s008940100045
  • Liu, H., Liu, K., Huang, Z., Park, C. M., Thimmegowda, N. R., Jang, J. H., … Kim, B. Y. (2013). A chrysin derivative suppresses skin cancer growth by inhibiting cyclin-dependent kinases. [Research Support, N.I.H., Extramural Research Support, Non-U.S. Journal of Biological Chemistry, 288(36), 25924–25937. doi:10.1074/jbc.M113.464669
  • Mahlen, S. D. (2011). Serratia infections: From military experiments to current practice. Clinical Microbiology Reviews, 24(4), 755–791. doi:10.1128/CMR.00017-11
  • Meng, X. Y., Zhang, H. X., Mezei, M., & Cui, M. (2011). Molecular docking: A powerful approach for structure-based drug discovery. [Research Support, N.I.H., Extramural Research Support, Non-U.S. Gov't Review]. Current Computer Aided-Drug Design, 7(2), 146–157. doi:10.2174/157340911795677602
  • Miller, B. R., III, McGee, T. D., Jr., Swails, J. M., Homeyer, N., Gohlke, H., & Roitberg, A. E. (2012). MMPBSA. py: An efficient program for end-state free energy calculations. Journal of Chemical Theory and Computation, 8(9), 3314–3321. doi:10.1021/ct300418h
  • Misra, S., Saini, M., Ojha, H., Sharma, D., & Sharma, K. (2017). Pharmacophore modelling, atom-based 3D-QSAR generation and virtual screening of molecules projected for mPGES-1 inhibitory activity. SAR and QSAR in Environmental Research, 28(1), 17–39. doi:10.1080/1062936X.2016.1273971
  • Moreau, C. A., Bhargav, S. P., Kumar, H., Quadt, K. A., Piirainen, H., Strauss, L., … Frischknecht, F. (2017). A unique profilin-actin interface is important for malaria parasite motility. PLoS Pathogens, 13(5), e1006412. \ doi:10.1371/journal.ppat.1006412
  • Ngo, L. T., Okogun, J. I., & Folk, W. R. (2013). 21st century natural product research and drug development and traditional medicines. [Historical Article Research Support, N.I.H., Extramural Research Support, Non-U.S. Gov't Review]. Natural Product Reports, 30(4), 584–592. doi:10.1039/c3np20120a
  • Oostenbrink, C., Villa, A., Mark, A. E., & van Gunsteren, W. F. (2004). A biomolecular force field based on the free enthalpy of hydration and solvation: The GROMOS force-field parameter sets 53A5 and 53A6. [Research Support, Non-U.S. Gov't]. Journal of Computational Chemistry, 25(13), 1656–1676. doi:10.1002/jcc.20090
  • Ordaz-Trinidad, N., Dorantes-Alvarez, L., & Salas-Benito, J. (2016). Patents on phytochemicals: methodologies of extraction, application in food and pharmaceutical industry. Recent Patents on Biotechnology, 9(3), 158–167. doi:10.2174/1872208310999160317145333
  • Padhi, A. K., Kumar, H., Vasaikar, S. V., Jayaram, B., & Gomes, J. (2012). Mechanisms of loss of functions of human angiogenin variants implicated in amyotrophic lateral sclerosis. [Research Support, Non-U.S. Gov't]. PLoS One, 7(2), e32479. doi:10.1371/journal.pone.0032479
  • Rello, J., Kalwaje Eshwara, V., Lagunes, L., Alves, J., Wunderink, R. G., Conway-Morris, A., … Zhang, Z. (2019). A global priority list of the TOp TEn resistant microorganisms (TOTEM) study at intensive care: A prioritization exercise based on multi-criteria decision analysis. European Journal of Clinical Microbiology & Infectious Diseases, 38(2), 319–323. doi:10.1007/s10096-018-3428-y
  • Revanasiddappa, P. D., Sankar, R., & Senapati, S. (2018). Role of the bound phospholipids in the structural stability of cholesteryl ester transfer protein. [Research Support, Non-U.S. Gov't]. The Journal of Physical Chemistry B, 122(15), 4239–4248. doi:10.1021/acs.jpcb.7b12095
  • Robinson, T. P., Bu, D. P., Carrique-Mas, J., Fevre, E. M., Gilbert, M., Grace, D., … Woolhouse, M. E. (2016). Antibiotic resistance is the quintessential One Health issue. [Editorial Research Support, Non-U.S. Gov't]. Transactions of the Royal Society of Tropical Medicine and Hygiene, 110(7), 377–380. doi:10.1093/trstmh/trw048
  • Ruggiero, A., Squeglia, F., Romano, M., Vitagliano, L., De Simone, A., & Berisio, R. (2017). Structure and dynamics of the multi-domain resuscitation promoting factor RpfB from Mycobacterium tuberculosis. Journal of Biomolecular Structure and Dynamics, 35(6), 1322–1330. doi:10.1080/07391102.2016.1182947
  • Santos, J. M., Egarter, S., Zuzarte-Luis, V., Kumar, H., Moreau, C. A., Kehrer, J., … Mair, G. R. (2017). Malaria parasite LIMP protein regulates sporozoite gliding motility and infectivity in mosquito and mammalian hosts. [Research Support, Non-U.S. Gov’t]. eLife, 6, e24109. doi:10.7554/eLife.24109
  • Schrodinger, L. (2010). The PyMOL molecular graphics system. Version 1.3r1.
  • Sharma, V., & Wakode, S. (2017). Structural insight into selective phosphodiesterase 4B inhibitors: Pharmacophore-based virtual screening, docking, and molecular dynamics simulations. [Letter Research Support, Non-U.S. Gov’t]. Journal of Biomolecular Structure and Dynamics, 35(6), 1339–1349. doi:10.1080/07391102.2016.1183520
  • Shi, P., Zhang, Y., Li, Y., & Bian, L. (2018). Probing the interaction of l-captopril with metallo-beta-lactamase CcrA by fluorescence spectra and molecular dynamic simulation. Luminescence, 33(5), 954–961. doi:10.1002/bio.3495
  • Tacconelli, E., Carrara, E., Savoldi, A., Harbarth, S., Mendelson, M., Monnet, D. L., … Magrini, N. (2018). Discovery, research, and development of new antibiotics: The WHO priority list of antibiotic-resistant bacteria and tuberculosis. The Lancet Infectious Diseases, 18(3), 318–327. doi:10.1016/S1473-3099(17)30753-3
  • Thakur, P. K., Kumar, J., Ray, D., Anjum, F., & Hassan, M. I. (2013). Search of potential inhibitor against New Delhi metallo-beta-lactamase 1 from a series of antibacterial natural compounds. Journal of Natural Science, Biology and Medicine, 4(1), 51. doi:10.4103/0976-9668.107260
  • Turner, P. (2005). XMGRACE, Version 5.1. 19. Beaverton, OR: Center for Coastal and Land-Margin Research, Oregon Graduate Institute of Science and Technology.
  • Wachino, J., Yamaguchi, Y., Mori, S., Jin, W., Kimura, K., Kurosaki, H., & Arakawa, Y. (2016). Structural insights into recognition of hydrolyzed carbapenems and inhibitors by sub-class B3 metallo-beta-lactamase SMB-1. Antimicrobial Agents and Chemotherapy, 60(7), 4274–4282. doi:10.1128/AAC.03108-15
  • Xiao, J., Fang, M., Shi, Y., Chen, H., Shen, B., Chen, J., … Zheng, H. (2015). Identification and validation novel of VIM-2 metallo-beta-lactamase tripeptide inhibitors [Research Support, Non-U.S. Gov’t]. Molecular Informatics, 34(8), 559–567. doi:10.1002/minf.201400178
  • Zeng, X., & Lin, J. (2013). Beta-lactamase induction and cell wall metabolism in Gram-negative bacteria. Frontiers in Microbiology, 4, 128. doi:10.3389/fmicb.2013.00128

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.