614
Views
13
CrossRef citations to date
0
Altmetric
Research Articles

Formation of the inclusion complex of water soluble fluorescent calix[4]arene and naringenin: solubility, cytotoxic effect and molecular modeling studies

ORCID Icon, ORCID Icon, ORCID Icon, ORCID Icon, ORCID Icon & ORCID Icon
Pages 3801-3813 | Received 10 Jul 2019, Accepted 28 Aug 2019, Published online: 11 Oct 2019

References

  • Ananchenko, G. S., Udachin, K. A., Pojarova, M., Jebors, S., Coleman, A. W., & Ripmeester, J. A. (2007). A molecular turnstile in para-octanoyl calix[4]arene nanocapsules. Chemical Communications, (7), 707–709. doi:10.1039/B613972H
  • Atwood, J. L., Barbour, L. J., & Jerga, A. (2002). Storage of methane and freon by ınterstitial van der Waals confinement. Science (New York, N.Y.), 296(5577), 2367–2369. doi:10.1126/science.1072252
  • Becke, A. D. (1988). Density-functional exchange-energy approximation with correct asymptotic behavior. Physical Review A, 38(6), 3098–3100. doi:10.1103/PhysRevA.38.3098
  • Bono, N., Pennetta, C., Sganappa, A., Giupponi, E., Sansone, F., Volonterio, A., & Candiani, G. (2018). Design and synthesis of biologically active cationic amphiphiles built on the calix [4] arene scaffold. International Journal of Pharmaceutics, 549(1–2), 436–445. doi:10.1016/j.ijpharm.2018.08.020
  • Bowers, K. J., Chow, D. E., Xu, F., Dror, R. O., Eastwood, M. P.,Gregersen, B. A., … Shaw, D. E. (2006). Scalable algorithms for molecular dynamics simulations on commodity clusters. SC’06: Proceedings of the 2006 ACM/IEEE Conference on Supercomputing, IEEE,Tampa, Florida.
  • Buening, M. K., Chang, R. L., Huang, M.-T., Fortner, J. G., Wood, A. W., & Conney, A. H. (1981). Activation and inhibition of benzo(a)pyrene and aflatoxin B1 metabolism in human liver microsomes by naturally occurring flavonoids. Cancer Research, 41(1), 67–72.
  • Cao, X., He, Y., Kong, Y., Mei, X., Huo, Y., He, Y., & Liu, J. (2019). Elucidating the interaction mechanism of eriocitrin with β-casein by multi-spectroscopic and molecular simulation methods. Food Hydrocolloids, 94, 63–70. doi:10.1016/j.foodhyd.2019.03.006
  • Collins, E. M., McKervey, M. A., Madigan, E., Moran, M. B., Owens, M., Ferguson, G., & Harris, S. J. (1991). Chemically modified calix[4]arenes. Regioselective synthesis of 1,3-(distal) derivatives and related compounds. X-Ray crystal structure of a diphenol-dinitrile. Journal of the Chemical Society, Perkin Transactions, 1(12), 3137–3142. doi:10.1039/p19910003137
  • Crozier, A., Clifford, M. N., & Ashihara, H. (2008). Plant secondary metabolites: Occurrence, structure and role in the human diet. New Jersey: John Wiley & Sons.
  • Darden, T., York, D., & Pedersen, L. (1993). Particle mesh Ewald: An N⋅log(N) method for Ewald sums in large systems. The Journal of Chemical Physics, 98(12), 10089–10092. doi:10.1063/1.464397
  • Das, S., Ghosh, P., Koley, S., & Singha Roy, A. (2018). Binding of naringin and naringenin with hen egg white lysozyme: A spectroscopic investigation and molecular docking study. Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy, 192, 211–221. doi:10.1016/j.saa.2017.11.015
  • Drakalska, E., Momekova, D., Manolova, Y., Budurova, D., Momekov, G., Genova, M., … Rangelov, S. (2014). Hybrid liposomal PEGylated calix [4] arene systems as drug delivery platforms for curcumin. International Journal of Pharmaceutics, 472(1–2), 165–174. doi:10.1016/j.ijpharm.2014.06.034
  • Edwards, D. J., & Bernier, S. M. (1996). Naringin and naringenin are not the primary CYP3A inhibitors in grapefruit juice. Life Sciences, 59(13), 1025–1030. doi:10.1016/0024-3205(96)00417-1
  • Erlund, I. (2004). Review of the flavonoids quercetin, hesperetin, and naringenin. Dietary sources, bioactivities, bioavailability, and epidemiology. Nutrition Research, 24(10), 851–874. doi:10.1016/j.nutres.2004.07.005
  • Ewald, P. P. (1921). Die Berechnung optischer und elektrostatischer Gitterpotentiale. Annalen Der Physik, 369(3), 253–287. doi:10.1002/andp.19213690304
  • Friesner, R. A., Banks, J. L., Murphy, R. B., Halgren, T. A., Klicic, J. J., Mainz, D. T., … Perry, J. K. (2004). Glide: A new approach for rapid, accurate docking and scoring. 1. Method and assessment of docking accuracy. Journal of medicinal Chemistry, 47(7), 1739–1749. doi:10.1021/jm0306430
  • Frydoonfar, H., McGrath, D., & Spigelman, A. (2003). The variable effect on proliferation of a colon cancer cell line by the citrus fruit flavonoid naringenin. Colorectal Disease : The Official Journal of the Association of Coloproctology of Great Britain and Ireland, 5(2), 149–152. doi:10.1046/j.1463-1318.2003.00444.x
  • Gao, K., Henning, S. M., Niu, Y., Youssefian, A. A., Seeram, N. P., Xu, A., & Heber, D. (2006). The citrus flavonoid naringenin stimulates DNA repair in prostate cancer cells. The Journal of Nutritional Biochemistry, 17(2), 89–95. doi:10.1016/j.jnutbio.2005.05.009
  • Genheden, S., & Ryde, U. (2015). The MM/PBSA and MM/GBSA methods to estimate ligand-binding affinities. Expert Opinion on Drug Discovery, 10(5), 449–461. doi:10.1517/17460441.2015.1032936
  • Gholami, S., & Bordbar, A.-K. (2014). Exploring binding properties of naringenin with bovine β-lactoglobulin: A fluorescence, molecular docking and molecular dynamics simulation study. Biophysical Chemistry, 187–188, 33–42. doi:10.1016/j.bpc.2014.01.003
  • Giepmans, B. N. G., Adams, S. R., Ellisman, M. H., & Tsien, R. Y. (2006). The Fluorescent Toolbox for assessing protein location and function. Science, 312(5771), 217–224. doi:10.1126/science.1124618
  • Godschalk, F., Genheden, S., Söderhjelm, P., & Ryde, U. (2013). Comparison of MM/GBSA calculations based on explicit and implicit solvent simulations. Physical Chemistry Chemical Physics, 15(20), 7731–7739. doi:10.1039/c3cp00116d
  • Greenidge, P. A., Kramer, C., Mozziconacci, J.-C., & Wolf, R. M. (2013). MM/GBSA binding energy prediction on the PDBbind data set: Successes, failures, and directions for further ımprovement. Journal of Chemical Information and Modeling, 53(1), 201–209. doi:10.1021/ci300425v
  • Guo, D.-S., & Liu, Y. (2014). Supramolecular chemistry of p-sulfonatocalix[n]arenes and its biological applications . Accounts of Chemical Research, 47(7), 1925–1934. doi:10.1021/ar500009g
  • Guo, D.-S., Wang, K., Wang, Y.-X., & Liu, Y. (2012). Cholinesterase-responsive supramolecular vesicle. Journal of the American Chemical Society, 134(24), 10244–10250. doi:10.1021/ja303280r
  • Harder, E., Damm, W., Maple, J., Wu, C., Reboul, M., Xiang, J. Y., … Knight, J. L. (2016). OPLS3: A force field providing broad coverage of drug-like small molecules and proteins. Journal of Chemical Theory and Computation, 12(1), 281–296. doi:10.1021/acs.jctc.5b00864
  • Henderson, M., Miranda, C., Stevens, J., Deinzer, M., & Buhler, D. (2000). In vitro inhibition of human P450 enzymes by prenylated flavonoids from hops, Humulus lupulus. Xenobiotica; The Fate of Foreign Compounds in Biological Systems, 30(3), 235–251. doi:10.1080/004982500237631
  • Higuchi, T., & Connors, K. (1965). Advances in analytical chemistry and instrumentation (Vol. 4, pp. 117–212). New York: Interscience.
  • Hoover, W. G. (1985). Canonical dynamics: Equilibrium phase-space distributions. Physical Review A, 31(3), 1695. doi:10.1103/PhysRevA.31.1695
  • Isobe, T., Ohkawara, S., Ochi, S., Tanaka-Kagawa, T., Jinno, H., & Hanioka, N. (2018). Naringenin glucuronidation in liver and intestine microsomes of humans, monkeys, rats, and mice. Food and Chemical Toxicology, 111, 417–422. doi:10.1016/j.fct.2017.11.057
  • Johnson, I., & Spence, M. (2010). A guide to fluorescent probes and labeling technologies. Life Technologies, 11th Edition, California.
  • Jorgensen, W. L., Chandrasekhar, J., Madura, J. D., Impey, R. W., & Klein, M. L. (1983). Comparison of simple potential functions for simulating liquid water. The Journal of Chemical Physics, 79(2), 926–935. doi:10.1063/1.445869
  • Kanaze, F., Kokkalou, E., Niopas, I., Barmpalexis, P., Georgarakis, E., & Bikiaris, D. (2010). Dissolution rate and stability study of flavanone aglycones, naringenin and hesperetin, by drug delivery systems based on polyvinylpyrrolidone (PVP) nanodispersions. Drug Development and Industrial Pharmacy, 36(3), 292–301. doi:10.1080/03639040903140589
  • Kumar, S. P., Birundha, K., Kaveri, K., & Devi, K. (2015). Antioxidant studies of chitosan nanoparticles containing naringenin and their cytotoxicity effects in lung cancer cells. International Journal of Biological Macromolecules, 78, 87–95. doi:10.1016/j.ijbiomac.2015.03.045
  • Lakowicz, J. R., & Weber, G. (1973). Quenching of fluorescence by oxygen. Probe for structural fluctuations in macromolecules. Biochemistry, 12(21), 4161–4170. doi:10.1021/bi00745a020
  • Lee, C., Yang, W., & Parr, R. G. (1988). Development of the Colle-Salvetti correlation-energy formula into a functional of the electron density. Physical Review B, 37(2), 785–789. doi:10.1103/PhysRevB.37.785
  • Lee, E. R., Kang, Y. J., Kim, H. J., Choi, H. Y., Kang, G. H., Kim, J. H., … Cho, S. G. (2008). Regulation of apoptosis by modified naringenin derivatives in human colorectal carcinoma RKO cells. Journal of cellular biochemistry, 104(1), 259–273. doi:10.1002/jcb.21622
  • Lentini, A., Forni, C., Provenzano, B., & Beninati, S. (2007). Enhancement of transglutaminase activity and polyamine depletion in B16-F10 melanoma cells by flavonoids naringenin and hesperitin correlate to reduction of the in vivo metastatic potential. Amino Acids, 32(1), 95–100. doi:10.1007/s00726-006-0304-3
  • Li, J., Abel, R., Zhu, K., Cao, Y., Zhao, S., & Friesner, R. A. (2011). The VSGB 2.0 model: A next generation energy model for high resolution protein structure modeling. Proteins: Structure, Function, and Bioinformatics, 79(10), 2794–2812. doi:10.1002/prot.23106
  • Liao, A. C. H., Kuo, C. C., Huang, Y. C., Yeh, C. W., Hseu, Y. C., Liu, J. Y., & Hsu, L. S. (2014). Naringenin inhibits migration of bladder cancer cells through downregulation of AKT and MMP-2. Molecular Medicine Reports, 10(3), 1531–1536. doi:10.3892/mmr.2014.2375
  • Liu, S.-y., He, Y-B., Qing, G.-Y., Xu, K.-X., & Qin, H.-J. (2005). Fluorescent sensors for amino acid anions based on calix[4]arenes bearing two dansyl groups. Tetrahedron: Asymmetry, 16(8), 1527–1534. doi:10.1016/j.tetasy.2005.02.032
  • Lyne, P. D., Lamb, M. L., & Saeh, J. C. (2006). Accurate prediction of the relative potencies of members of a series of kinase ınhibitors using molecular docking and MM-GBSA scoring. Journal of Medicinal Chemistry, 49(16), 4805–4808. doi:10.1021/jm060522a
  • Mareeswaran, P. M., Babu, E., Sathish, V., Kim, B., Woo, S. I., & Rajagopal, S. (2014). p-Sulfonatocalix [4] arene as a carrier for curcumin. New Journal of Chemistry, 38(3), 1336–1345. doi:10.1039/c3nj00935a
  • Martyna, G. J., Tobias, D. J., & Klein, M. L. (1994). Constant pressure molecular dynamics algorithms. The Journal of Chemical Physics, 101(5), 4177–4189.
  • MarvinSketch, 16.1.4.0 (2016). ChemAxon (http://www.chemaxon.com).
  • Meshram, R. J., Bagul, K. T., Pawnikar, S. P., Barage, S. H., Kolte, B. S., & Gacche, R. N. (2019). Known compounds and new lessons: Structural and electronic basis of flavonoid-based bioactivities. Journal of Biomolecular Structure and Dynamics, 1–17 (In Press). doi:10.1080/07391102.2019.1597770
  • Moon, Y. J., Wang, X., & Morris, M. E. (2006). Dietary flavonoids: Effects on xenobiotic and carcinogen metabolism. Toxicology In Vitro, 20(2), 187–210. doi:10.1016/j.tiv.2005.06.048
  • Nosé, S. (1984). A unified formulation of the constant temperature molecular dynamics methods. The Journal of chemical Physics, 81(1), 511–519. doi:10.1063/1.447334
  • Oguz, M., Bhatti, A. A., Karakurt, S., Aktas, M., & Yilmaz, M. (2017). New water soluble Hg2 + selective fluorescent calix[4]arenes: Synthesis and application in living cells imaging. Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy, 171, 340–345. doi:10.1016/j.saa.2016.08.042
  • Parveen, S., Misra, R., & Sahoo, S. K. (2012). Nanoparticles: A boon to drug delivery, therapeutics, diagnostics and imaging. Nanomedicine: Nanotechnology, Biology and Medicine, 8(2), 147–166. doi:10.1016/j.nano.2011.05.016
  • Podoprygorina, G., Bolte, M., & Böhmer, V. (2009). Tetra-urea calix[4]arenes 1,3-bridged at the narrow rim. Organic & Biomolecular Chemistry, 7(8), 1592–1598. doi:10.1039/b819710e
  • Qian, X., Zhou, X., Ran, X., Ni, H., Li, Z., Qu, Q., … Yang, L. (2019). Facile and clean synthesis of dihydroxylatopillar[5]arene-stabilized gold nanoparticles integrated Pd/MnO2 nanocomposites for robust and ultrasensitive detection of cardiac troponin I. Biosensors & Bioelectronics, 130, 214–224. doi:10.1016/j.bios.2019.01.041
  • Ran, X., Qu, Q., Qian, X., Xie, W., Li, S., Li, L., & Yang, L. (2018). Water-soluble pillar [6] arene functionalized nitrogen-doped carbon quantum dots with excellent supramolecular recognition capability and superior electrochemical sensing performance towards TNT. Sensors and Actuators B: Chemical, 257, 362–371. doi:10.1016/j.snb.2017.10.185
  • Sahoo, N., Kakran, M., Shaal, L., Li, L., Müller, R., Pal, M., & Tan, L. (2011). Preparation and characterization of quercetin nanocrystals. Journal of Pharmaceutical Sciences, 100(6), 2379–2390. doi:10.1002/jps.22446
  • Sakalli, S., Burkina, V., Pilipenko, N., Zlabek, V., & Zamaratskaia, G. (2018). In vitro effects of diosmin, naringenin, quercetin and indole-3-carbinol on fish hepatic CYP1A1 in the presence of clotrimazole and dexamethasone. Chemosphere, 192, 105–112. doi:10.1016/j.chemosphere.2017.10.106
  • Scheerder, J., Vreekamp, R. H., Engbersen, J. F. J., Verboom, W., van Duynhoven, J. P. M., & Reinhoudt, D. N. (1996). The pinched cone conformation of calix[4]arenes: Noncovalent rigidification of the calix[4]arene skeleton. The Journal of Organic Chemistry, 61(10), 3476–3481. doi:10.1021/jo9600262
  • Maestro molecular modeling package. (2015). Schrödinger, LLC, New York, NY.
  • Selvaraj, S., Krishnaswamy, S., Devashya, V., Sethuraman, S., & Krishnan, U. M. (2014). Investigations on the membrane interactions of naringin and its complexes with copper and iron: İmplications for their cytotoxicity. RSC Advances, 4(87), 46407–46417. doi:10.1039/C4RA08157A
  • Semalty, A., Semalty, M., Singh, D., & Rawat, M. (2010). Preparation and characterization of phospholipid complexes of naringenin for effective drug delivery. Journal of Inclusion Phenomena and Macrocyclic Chemistry, 67(3–4), 253–260. doi:10.1007/s10847-009-9705-8
  • Semalty, A., Tanwar, Y. S., & Semalty, M. (2014). Preparation and characterization of cyclodextrin inclusion complex of naringenin and critical comparison with phospholipid complexation for improving solubility and dissolution. Journal of Thermal Analysis and Calorimetry, 115(3), 2471–2478. doi:10.1007/s10973-013-3463-y
  • Shelley, J. C., Cholleti, A., Frye, L. L., Greenwood, J. R., Timlin, M. R., & Uchimaya, M. (2007). Epik: A software program for pK a prediction and protonation state generation for drug-like molecules. Journal of Computer-Aided Molecular Design, 21(12), 681–691. doi:10.1007/s10822-007-9133-z
  • Sirin, S., Kumar, R., Martinez, C., Karmilowicz, M. J., Ghosh, P., Abramov, Y. A., … Sherman, W. (2014). A computational approach to enzyme design: Predicting ω-aminotransferase catalytic activity using docking and MM-GBSA scoring. Journal of Chemical Information and Modeling, 54(8), 2334–2346. doi:10.1021/ci5002185
  • Tommasini, S., Calabrò, M. L., Raneri, D., Ficarra, P., & Ficarra, R. (2004). Combined effect of pH and polysorbates with cyclodextrins on solubilization of naringenin. Journal of Pharmaceutical and Biomedical Analysis, 36(2), 327–333. doi:10.1016/j.jpba.2004.06.013
  • Tozuka, Y., Kishi, J., & Takeuchi, H. (2010). Anomalous dissolution property enhancement of naringenin from spray-dried particles with α-glucosylhesperidin. Advanced Powder Technology, 21(3), 305–309. doi:10.1016/j.apt.2009.12.013
  • Tu, B., Liu, Z.-J., Chen, Z.-F., Ouyang, Y., & Hu, Y.-J. (2015). Understanding the structure-activity relationship between quercetin and naringenin: İn vitro [10.1039/C5RA22551E]. RSC Advances, 5(128), 106171–106181. doi:10.1039/C5RA22551E
  • Tu, B., Wang, Y., Mi, R., Ouyang, Y., & Hu, Y.-J. (2015). Evaluation of the interaction between naringenin and human serum albumin: Insights from fluorescence spectroscopy, electrochemical measurement and molecular docking. Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy, 149, 536–543. doi:10.1016/j.saa.2015.04.087
  • Türkkan, B., Özyürek, M., Bener, M., Güçlü, K., & Apak, R. (2012). Synthesis, characterization and antioxidant capacity of naringenin-oxime. Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy, 85(1), 235–240. doi:10.1016/j.saa.2011.09.066
  • Ukhatskaya, E. V., Kurkov, S. V., Matthews, S. E., El Fagui, A., Amiel, C., Dalmas, F., & Loftsson, T. (2010). Evaluation of a cationic calix [4] arene: Solubilization and self-aggregation ability. International Journal of Pharmaceutics, 402(1–2), 10–19. doi:10.1016/j.ijpharm.2010.09.011
  • Valand, N. N., Patel, M. B., & Menon, S. K. (2015). Curcumin-p-sulfonatocalix [4] resorcinarene (p-SC [4] R) interaction: Thermo-physico chemistry, stability and biological evaluation. RSC Advances, 5(12), 8739–8752. doi:10.1039/C4RA12047G
  • White, N. S., & Errington, R. J. (2005). Fluorescence techniques for drug delivery research: Theory and practice. Advanced Drug Delivery Reviews, 57(1), 17–42. doi:10.1016/j.addr.2004.08.003
  • Williams, R. J., Spencer, J. P., & Rice-Evans, C. (2004). Flavonoids: Antioxidants or signalling molecules? Free Radical Biology & Medicine, 36(7), 838–849. doi:10.1016/j.freeradbiomed.2004.01.001
  • Yadav, A., Kumar, R., Sunkaria, A., Singhal, N., Kumar, M., & Sandhir, R. (2016). Evaluation of potential flavonoid inhibitors of glyoxalase-I based on virtual screening and in vitro studies. Journal of Biomolecular Structure & Dynamics, 34(5), 993–1007. doi:10.1080/07391102.2015.1064830
  • Yang, L., Ran, X., Cai, L., Li, Y., Zhao, H., & Li, C.-P. (2016). Calix[8]arene functionalized single-walled carbon nanohorns for dual-signalling electrochemical sensing of aconitine based on competitive host-guest recognition. Biosensors & Bioelectronics, 83, 347–352. doi:10.1016/j.bios.2016.04.079
  • Yang, L., Xie, X., Cai, L., Ran, X., Li, Y., Yin, T., … Li, C.-P. (2016). p-sulfonated calix[8]arene functionalized graphene as a “turn on” fluorescent sensing platform for aconitine determination. Biosensors & Bioelectronics, 82, 146–154. doi:10.1016/j.bios.2016.04.005
  • Yang, L., Zhao, H., Li, Y., Ran, X., Deng, G., Xie, X., & Li, C.-P. (2015). Fluorescent detection of tadalafil based on competitive host-guest ınteraction using p-sulfonated calix[6]arene functionalized graphene. ACS Applied Materials & Interfaces, 7(48), 26557–26565. doi:10.1021/acsami.5b07833
  • Yang, L., Zhao, H., Li, Y., Ran, X., Deng, G., Zhang, Y., … Li, C.-P. (2016). Indicator displacement assay for cholesterol electrochemical sensing using a calix[6]arene functionalized graphene-modified electrode. The Analyst, 141(1), 270–278. doi:10.1039/c5an01843a
  • Yang, Y.-W. (2011). Towards biocompatible nanovalves based on mesoporous silica nanoparticles. MedChemComm, 2(11), 1033–1049. doi:10.1039/c1md00158b
  • Yilmaz, M., Karanastasis, A. A., Chatziathanasiadou, M. V., Oguz, M., Kougioumtzi, A., Clemente, N., … Mavromoustakos, T. (2019). Inclusion of quercetin in gold nanoparticles decorated with supramolecular hosts amplifies ıts tumor targeting properties. ACS Applied Bio Materials, 2(7), 2715. doi:10.1021/acsabm.8b00748
  • Yilmaz, M., & Sayin, S. (2016). Calixarenes in organo and biomimetic catalysis. Calixarenes and beyond (pp. 719–742). Switzerland: Springer.
  • Zhao, G., Ran, X., Zhou, X., Tan, X., Lei, H., Xie, X., … Du, G. (2018). Green synthesis of hydroxylatopillar[5]arene-modified gold nanoparticles and their self-assembly, sensing, and catalysis applications. ACS Sustainable Chemistry & Engineering, 6(3), 3938–3947. doi:10.1021/acssuschemeng.7b04292
  • Zhou, X., Yang, L., Tan, X., Zhao, G., Xie, X., & Du, G. (2018). A robust electrochemical immunosensor based on hydroxyl pillar[5]arene@AuNPs@g-C3N4 hybrid nanomaterial for ultrasensitive detection of prostate specific antigen. Biosensors & Bioelectronics, 112, 31–39. doi:10.1016/j.bios.2018.04.036
  • Zhou, X., Zhao, G., Chen, M., Gao, W., Zhou, X., Xie, X., … Du, G. (2018). Facile and green approach to prepare nanostructured Au@ MnO2 and its applications for catalysis and fluorescence sensing of glutathione in human blood. ACS Sustainable Chemistry & Engineering, 6(3), 3948–3956. doi:10.1021/acssuschemeng.7b04313
  • Zhou, Y., Li, H., & Yang, Y.-W. (2015). Controlled drug delivery systems based on calixarenes. Chinese Chemical Letters, 26(7), 825–828. doi:10.1016/j.cclet.2015.01.038
  • Zhu, J., Sun, X., Wang, S., Xu, Y., & Wang, D. (2017). Formation of nanocomplexes comprising whey proteins and fucoxanthin: Characterization, spectroscopic analysis, and molecular docking. Food Hydrocolloids, 63, 391–403. doi:10.1016/j.foodhyd.2016.09.027
  • Zuo, C.-S., Wiest, O., & Wu, Y.-D. (2011). Structures and conformations of heteroatom-bridged calixarenes. Journal of Physical Organic Chemistry, 24(12), 1157–1165. doi:10.1002/poc.1840

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.