264
Views
10
CrossRef citations to date
0
Altmetric
Research Articles

Interaction of saffron carotenoids with catalase: in vitro, in vivo and molecular docking studies

, &
Pages 3916-3926 | Received 29 Jul 2019, Accepted 09 Sep 2019, Published online: 27 Sep 2019

References

  • Altinoz, E., Ozmen, T., Oner, Z., Elbe, H., Erdemli, M. E., & Bag, H. G. (2016). Effect of crocin on oxidative stress in recovery from single bout of swimming exercise in rats. General Physiology and Biophysics, 35(1), 87–94. doi:10.4149/gpb_2015018
  • Anand, U., Kurup, L., & Mukherjee, S. (2012). Deciphering the role of pH in the binding of ciprofloxacin hydrochloride to bovine serum albumin. Physical Chemistry Chemical Physics, 14(12), 4250–4258. doi:10.1039/c2cp00001f
  • Asdaq, S. M., & Inamdar, M. N. (2010). Potential of Crocus sativus (saffron) and its constituent, crocin, as hypolipidemic and antioxidant in rats. Applied Biochemistry and Biotechnology, 162(2), 358–372. doi:10.1007/s12010-009-8740-7
  • Ashrafi, M., Bathaie, S. Z., Abroun, S., & Azizian, M. (2015). Effect of crocin on cell cycle regulators in N-nitroso-N-methylurea-induced breast cancer in rats. DNA and Cell Biology, 34(11), 684–691. doi:10.1089/dna.2015.2951
  • Aung, H. H., Wang, C. Z., Ni, M., Fishbein, A., Mehendale, S. R., Xie, J. T., … Yuan, C. S. (2007). Crocin from Crocus sativus possesses significant anti-proliferation effects on human colorectal cancer cells. Experimental Oncology, 29(3), 175.
  • Bahmani, F., Bathaie, S. Z., Aldavood, S. J., & Ghahghaei, A. (2016). Inhibitory effect of crocin(s) on lens alpha-crystallin glycation and aggregation, results in the decrease of the risk of diabetic cataract. Molecules, 21(2), 143. doi:10.3390/molecules21020143
  • Bakshi, H., Sam, S., Rozati, R., Sultan, P., Islam, T., Rathore, B., … Saxena, R. C. (2010). DNA fragmentation and cell cycle arrest: A hallmark of apoptosis induced by crocin from Kashmiri saffron in a human pancreatic cancer cell line. Asian Pacific Journal of Cancer Prevention, 11(3), 675–679.
  • Bathaie, S. Z., Bolhassani, A., & Tamanoi, F. (2014). Anticancer effect and molecular targets of saffron carotenoids. In The Enzymes (Vol. 36, pp. 57–86): Elsevier.
  • Bauer, G. (2012). Tumor cell-protective catalase as a novel target for rational therapeutic approaches based on specific intercellular ROS signaling. Anticancer Research, 32(7), 2599–2624.
  • Bechtel, W., & Bauer, G. (2009a). Catalase protects tumor cells from apoptosis induction by intercellular ROS signaling. Anticancer Research, 29(11), 4541–4557.
  • Bechtel, W., & Bauer, G. (2009b). Modulation of intercellular ROS signaling of human tumor cells. Anticancer Research, 29(11), 4559–4570.
  • Chang, W. C., Lin, Y. L., Lee, M. J., Shiow, S. J., & Wang, C. J. (1996). Inhibitory effect of crocetin on benzo(a)pyrene genotoxicity and neoplastic transformation in C3H10T1/2 cells. Anticancer Research, 16(6B), 3603–3608.
  • Chen, L., Qi, Y., & Yang, X. (2015). Neuroprotective effects of crocin against oxidative stress induced by ischemia/reperfusion injury in rat retina. Ophthalmic Research, 54(3), 157–168. doi:10.1159/000439026
  • Chen, L., Zhang, J., Zhu, Y., & Zhang, Y. (2018). Interaction of chromium(III) or chromium(VI) with catalase and its effect on the structure and function of catalase: An in vitro study. Food Chemistry, 244, 378–385. doi:10.1016/j.foodchem.2017.10.062
  • Chen, P., Chen, Y., Wang, Y., Cai, S., Deng, L., Liu, J., & Zhang, H. (2016). Comparative evaluation of hepatoprotective activities of geniposide, crocins and crocetin by CCl4-induced liver injury in mice. Biomolecules & Therapeutics), 24(2), 156–162. doi:10.4062/biomolther.2015.094
  • Chen, Y., Zhang, H., Tian, X., Zhao, C., Cai, L., Liu, Y., … Chen, C. (2008). Antioxidant potential of crocins and ethanol extracts of Gardenia jasminoides ELLIS and Crocus sativus L.: A relationship investigation between antioxidant activity and crocin contents. Food Chemistry, 109(3), 484–492. doi:10.1016/j.foodchem.2007.09.080
  • Chi, Z., Liu, R., & Zhang, H. (2010). Potential enzyme toxicity of oxytetracycline to catalase. Science of the Total Environment, 408(22), 5399–5404. doi:10.1016/j.scitotenv.2010.08.005
  • Deichman, G., & Kashleva, E. (1987). Sensitivity to hydrogen-peroxide and the survival ability in vivo of Syrian-hamster cells transformed in vitro by Rous-sarcoma virus. Doklady Akademii Nauk SSSR, 292(2), 473–476.
  • Deichman, G. I., Kashkina, L. M., Mizenina, O. A., Gorojanskaya, E. G., Nikiforov, M. A., Gudkov, A. V., … Tatosyan, A. G. (1996). Mechanisms of unusually high antioxidant activity of RSV‐SR‐transformed cells and of its suppression by activated p21ras. International Journal of Cancer, 66(6), 747–752. doi:10.1002/(SICI)1097-0215(19960611)66:6<747::AID-IJC7>3.0.CO;2-#
  • El-Beshbishy, H. A., Hassan, M. H., Aly, H. A., Doghish, A. S., & Alghaithy, A. A. (2012). Crocin “saffron” protects against beryllium chloride toxicity in rats through diminution of oxidative stress and enhancing gene expression of antioxidant enzymes. Ecotoxicology and Environmental Safety, 83, 47–54. doi:10.1016/j.ecoenv.2012.06.003
  • Escribano, J., Alonso, G.-L., Coca-Prados, M., & Fernández, J.-A. (1996). Crocin, safranal and picrocrocin from saffron (Crocus sativus L.) inhibit the growth of human cancer cells in vitro. Cancer Letters, 100(1-2), 23–30. doi:10.1016/0304-3835(95)04067-6
  • Forster, T., & Sinaoglu, O. (1996). Modern quantum chemistry (Vol. 3). New York: Academic Press.
  • Heidarzadeh, H., Bathaie, S. Z., Abroun, S., & Mohagheghi, M. A. (2018). Evaluating the cytotoxic effect of crocin on MDA-MB-468 cell line based on apoptosis induction, ER stress, and autophagy markers. Pathobiology Research, 20(4), 37–51.
  • Heigold, S., Sers, C., Bechtel, W., Ivanovas, B., Schäfer, R., & Bauer, G. (2002). Nitric oxide mediates apoptosis induction selectively in transformed fibroblasts compared to nontransformed fibroblasts. Carcinogenesis, 23(6), 929–941. doi:10.1093/carcin/23.6.929
  • Heinzelmann, S., & Bauer, G. (2010). Multiple protective functions of catalase against intercellular apoptosis-inducing ROS signaling of human tumor cells. Biological Chemistry, 391(6), 675–693. doi:10.1515/bc.2010.068
  • Herdener, M., Heigold, S., Saran, M., & Bauer, G. (2000). Target cell–derived superoxide anions cause efficiency and selectivity of intercellular induction of apoptosis. Free Radical Biology and Medicine, 29(12), 1260–1271. doi:10.1016/S0891-5849(00)00422-6
  • Hoshyar, R., Bathaie, S. Z., & Sadeghizadeh, M. (2013). Crocin triggers the apoptosis through increasing the Bax/Bcl-2 ratio and caspase activation in human gastric adenocarcinoma, AGS, cells. DNA and Cell Biology, 32(2), 50–57. doi:10.1089/dna.2012.1866
  • Ilyukha, V. (2001). Superoxide dismutase and catalase in the organs of mammals of different ecogenesis. Journal of Evolutionary Biochemistry and Physiology, 37(3), 241–245. doi:0022-0930/01/3703-0241$25.00
  • Ishizuka, F., Shimazawa, M., Umigai, N., Ogishima, H., Nakamura, S., Tsuruma, K., & Hara, H. (2013). Crocetin, a carotenoid derivative, inhibits retinal ischemic damage in mice. European Journal of Pharmacology, 703(1-3), 1–10. doi:10.1016/j.ejphar.2013.02.007
  • Jafarisani, M., Bathaie, S. Z., & Mousavi, M. F. (2018). Saffron carotenoids (crocin and crocetin) binding to human serum albumin as investigated by different spectroscopic methods and molecular docking. Journal of Biomolecular Structure and Dynamics, 36(7), 1681–1690 doi:10.1080/07391102.2017.1331865.
  • Khan, M. B., Hoda, M. N., Ishrat, T., Ahmad, S., Moshahid Khan, M., Ahmad, A., … Islam, F. (2012). Neuroprotective efficacy of Nardostachys jatamansi and crocetin in conjunction with selenium in cognitive impairment. Neurological Sciences, 33(5), 1011–1020. doi:10.1007/s10072-011-0880-1
  • Kim, S. H., Lee, J. M., Kim, S. C., Park, C. B., & Lee, P. C. (2014). Proposed cytotoxic mechanisms of the saffron carotenoids crocin and crocetin on cancer cell lines. Biochemistry and Cell Biology, 92(2), 105–111. doi:10.1139/bcb-2013-0091
  • Lakowicz, J. R. (2013). Principles of fluorescence spectroscopy. New York, USA: Springer Science & Business Media.
  • Louis‐Jeune, C., Andrade‐Navarro, M. A., & Perez‐Iratxeta, C. (2012). Prediction of protein secondary structure from circular dichroism using theoretically derived spectra. Proteins: Structure, Function, and Bioinformatics, 80(2), 374–381. doi:10.1002/prot.23188
  • Magesh, V., Singh, J. P., Selvendiran, K., Ekambaram, G., & Sakthisekaran, D. (2006). Antitumour activity of crocetin in accordance to tumor incidence, antioxidant status, drug metabolizing enzymes and histopathological studies. Molecular and Cellular Biochemistry, 287(1-2), 127–135. doi:10.1007/s11010-005-9088-0
  • Mousavi, S. H., Moallem, S. A., Mehri, S., Shahsavand, S., Nassirli, H., & Malaekeh-Nikouei, B. (2011). Improvement of cytotoxic and apoptogenic properties of crocin in cancer cell lines by its nanoliposomal form. Pharmaceutical Biology, 49(10), 1039–1045. doi:10.3109/13880209.2011.563315
  • Mousavi, S. H., Tayarani, N. Z., & Parsaee, H. (2010). Protective effect of saffron extract and crocin on reactive oxygen species-mediated high glucose-induced toxicity in PC12 cells. Cellular and Molecular Neurobiology, 30(2), 185–191. doi:10.1007/s10571-009-9441-z
  • Mu, H., Chen, S., Liu, F., Xiao, J., Huang, H., Zhang, Y., … Yuan, X. (2019). Stereoselective interactions of lactic acid enantiomers with HSA: Spectroscopy and docking application. Food Chemistry, 270, 429–435. doi:10.1016/j.foodchem.2018.07.135
  • Pinggui, Y., Shang, Z., & Qingsen, Y. (2001). Interaction between quinolone antibacterial agents and catalase by fluorescence spectroscopy. Chinese Journal of Analytical Chemistry, 29(6), 646–648.
  • Putnam, C. D., Arvai, A. S., Bourne, Y., & Tainer, J. A. (2000). Active and inhibited human catalase structures: Ligand and NADPH binding and catalytic mechanism. Journal of Molecular Biology, 296(1), 295–309. doi:10.1006/jmbi.1999.3458
  • Shen, X.-C., & Qian, Z.-Y. (2006). Effects of crocetin on antioxidant enzymatic activities in cardiac hypertrophy induced by norepinephrine in rats. Die Pharmazie-An International Journal of Pharmaceutical Sciences, 61(4), 348–352.
  • Steinmann, M., Moosmann, N., Schimmel, M., Gerhardus, C., & Bauer, G. (2004). Differential role of extra-and intracellular superoxide anions for nitric oxide-mediated apoptosis induction. In Vivo, 18(3), 293–310. doi:0258-851X/2004 $2.00+.40
  • Trott, O., & Olson, A. J. (2010). AutoDock Vina: Improving the speed and accuracy of docking with a new scoring function, efficient optimization, and multithreading. Journal of Computational Chemistry, 31(2), 455–461. doi:10.1002/jcc.21334
  • Valeur, B., & Brochon, J.-C. (2012). New trends in fluorescence spectroscopy: Applications to chemical and life sciences (Vol. 1). New York, USA: Springer Science & Business Media.
  • Van de Weert, M., & Stella, L. (2011). Fluorescence quenching and ligand binding: A critical discussion of a popular methodology. Journal of Molecular Structure, 998(1-3), 144–150. doi:10.1016/j.molstruc.2011.05.023
  • Wang, C. J., Shiow, S. J., & Lin, J. K. (1991). Effects of crocetin on the hepatotoxicity and hepatic DNA binding of aflatoxin B1 in rats. Carcinogenesis, 12(3), 459–462. doi:10.1093/carcin/12.3.459
  • Ware, W. R. (1962). Oxygen quenching of fluorescence in solution: An experimental study of the diffusion process. The Journal of Physical Chemistry, 66(3), 455–458. doi:10.1021/j100809a020
  • Xi, L., Qian, Z., Du, P., & Fu, J. (2007). Pharmacokinetic properties of crocin (crocetin digentiobiose ester) following oral administration in rats. Phytomedicine, 14(9), 633–636. doi:10.1016/j.phymed.2006.11.028
  • Yaribeygi, H., Mohammadi, M. T., & Sahebkar, A. (2018). Crocin potentiates antioxidant defense system and improves oxidative damage in liver tissue in diabetic rats. Biomedicine & Pharmacotherapy, 98, 333–337. doi:10.1016/j.biopha.2017.12.077
  • Zhang, W., Li, Y., & Ge, Z. (2017). Cardiaprotective effect of crocetin by attenuating apoptosis in isoproterenol induced myocardial infarction rat model. Biomedicine & Pharmacotherapy, 93, 376–382. doi:10.1016/j.biopha.2017.06.032
  • Zhang, Y., Fei, F., Zhen, L., Zhu, X., Wang, J., Li, S., … Wang, G. (2017). Sensitive analysis and simultaneous assessment of pharmacokinetic properties of crocin and crocetin after oral administration in rats. Journal of Chromatography B Analytical Technology Biomedical Life Sciences, 1044–1045, 1–7. doi:10.1016/j.jchromb.2016.12.003

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.