729
Views
27
CrossRef citations to date
0
Altmetric
Research Articles

Multi-epitope based vaccine against yellow fever virus applying immunoinformatics approaches

, , , , , , , , , & show all
Pages 219-235 | Received 11 Jul 2019, Accepted 16 Dec 2019, Published online: 06 Jan 2020

References

  • Ali, M., Pandey, R. K., Khatoon, N., Narula, A., Mishra, A., & Prajapati, V. K. (2017). Exploring dengue genome to construct a multi-epitope based subunit vaccine by utilizing immunoinformatics approach to battle against dengue infection. Scientific Reports, 7(1), 1–13. doi:10.1038/s41598-017-09199-w
  • Altschul, S. F., Gish, W., Miller, W., Myers, E. W., & Lipman, D. J. (1990). Basic local alignment search tool. Journal of Molecular Biology, 215(3), 403–410. doi:10.1016/S0022-2836(05)80360-2
  • Backert, L., & Kohlbacher, O. (2015). Immunoinformatics and epitope prediction in the age of genomic medicine. Genome Medicine, 7(1), 119. doi:10.1186/s13073-015-0245-0
  • Barh, D., Misra, A. N., Kumar, A., & Azevedo, V. (2010). A novel strategy of epitope design in Neisseria gonorrhoeae. Bioinformation, 5(2), 77–82. doi:10.6026/97320630005077
  • Benelli, G. (2015). Research in mosquito control: Current challenges for a brighter future. Parasitology Research, 114(8), 2801–2805. doi:10.1007/s00436-015-4586-9
  • Biscayart, C., Carrega, M. E. P., Sagradini, S., Gentile, Á., Stecher, D., Orduna, T., … Vizzotti, C. (2014). Yellow fever vaccine-associated adverse events following extensive immunization in Argentina. Vaccine, 32(11), 1266–1272. doi:10.1016/j.vaccine.2014.01.015
  • Breugelmans, J. G., Lewis, R. F., Agbenu, E., Veit, O., Jackson, D., Domingo, C., … Yactayo, S. (2013). Adverse events following yellow fever preventive vaccination campaigns in eight African countries from 2007 to 2010. Vaccine, 31(14), 1819–1829. doi:10.1016/j.vaccine.2013.01.054
  • Campi-Azevedo, A. C., Costa-Pereira, C., Antonelli, L. R., Fonseca, C. T., Teixeira-Carvalho, A., Villela-Rezende, G., … Martins-Filho, O. A. (2016). Booster dose after 10 years is recommended following 17DD-YF primary vaccination. Human Vaccines & Immunotherapeutics, 12(2), 491–502. doi:10.1080/21645515.2015.1082693
  • Chauhan, V., Rungta, T., Goyal, K., & Singh, M. P. (2019). Designing a multi-epitope based vaccine to combat Kaposi Sarcoma utilizing immunoinformatics approach. Scientific Reports, 9(1), 2517. doi:10.1038/s41598-019-39299-8
  • Chen, H., Chen, Z., Wu, B., Ullah, J., Zhang, T., Jia, J., … Tan, T. (2017). Influences of various peptide linkers on the Thermotoga maritima MSB8 Nitrilase displayed on the spore surface of Bacillus subtilis. Journal of Molecular Microbiology and Biotechnology, 27(1), 64–71. doi:10.1159/000454813
  • Chen, S., Wu, Z., Wang, M., & Cheng, A. (2017). Innate immune evasion mediated by flaviviridae non-structural proteins. Viruses, 9(10), 291. doi:10.3390/v9100291
  • Chen, X., Zaro, J. L., & Shen, W.-C. (2013). Fusion protein linkers: Property, design and functionality. Advanced Drug Delivery Reviews, 65(10), 1357–1369. doi:10.1016/j.addr.2012.09.039
  • Cole, G. T., Hung, C.-Y., Sanderson, S. D., Hurtgen, B. J., Wüthrich, M., Klein, B. S., … Levitz, S. M. (2013). Novel strategies to enhance vaccine immunity against Coccidioidomycosis. PLoS Pathogens, 9(12), e1003768. doi:10.1371/journal.ppat.1003768
  • Dalgarno, L., Trent, D. W., Strauss, J. H., & Rice, C. M. (1986). Partial nucleotide sequence of the Murray Valley encephalitis virus genome: Comparison of the encoded polypeptides with yellow fever virus structural and non-structural proteins. Journal of Molecular Biology, 187(3), 309–323. doi:10.1016/0022-2836(86)90435-3
  • Dar, H. A., Zaheer, T., Shehroz, M., Ullah, N., Naz, K., Muhammad, S. A., … Ali, A. (2019). Immunoinformatics-aided design and evaluation of a potential multi-epitope vaccine against Klebsiella Pneumoniae. Vaccines, 7(3), 88. doi:10.3390/vaccines7030088
  • de Melo, A. B., Nascimento, E. J. M., Braga-Neto, U., Dhalia, R., Silva, A. M., Oelke, M., … Marques, E. T. A. (2013). T-Cell memory responses elicited by yellow fever vaccine are targeted to overlapping epitopes containing multiple HLA-I and -II binding motifs. PLoS Neglected Tropical Diseases, 7(1), e1938. doi:10.1371/journal.pntd.0001938
  • Dhanda, S. K., Vir, P., & Raghava, G. P. (2013). Designing of interferon-gamma inducing MHC class-II binders. Biology Direct, 8(1), 30. doi:10.1186/1745-6150-8-30
  • Dorosti, H., Eslami, M., Negahdaripour, M., Ghoshoon, M. B., Gholami, A., Heidari, R., … Ghasemi, Y. (2019). Vaccinomics approach for developing multi-epitope peptide pneumococcal vaccine. Journal of Biomolecular Structure and Dynamics, 37(13), 3524–3535. doi:10.1080/07391102.2018.1519460
  • Doytchinova, I. A., & Flower, D. R. (2007). VaxiJen: A server for prediction of protective antigens, tumour antigens and subunit vaccines. BMC Bioinformatics, 8(1), 4. doi:10.1186/1471-2105-8-4
  • El-Manzalawy, Y., Dobbs, D., & Honavar, V. (2008). Predicting linear B-cell epitopes using string kernels. Journal of Molecular Recognition, 21(4), 243–255. doi:10.1002/jmr.893
  • Faria, N. R., Kraemer, M. U. G., Hill, S. C., Goes de Jesus, J., Aguiar, R. S., Iani, F. C. M., … Pybus, O. G. (2018). Genomic and epidemiological monitoring of yellow fever virus transmission potential. Science, 361(6405), 894–899. doi:10.1126/science.aat7115
  • Faria, N. R., Kraemer, M. U. G., Hill, S., Jesus, J. G. D., Aguiar, R. S. D., Iani, F. C. M., … Pybus, O. G. (2018). Genomic and epidemiological monitoring of yellow fever virus transmission potential. BioRxiv, 361(6405), 894–899. doi:10.1101/299842.
  • Finn, R. D., Attwood, T. K., Babbitt, P. C., Bateman, A., Bork, P., Bridge, A. J., … Mitchell, A. L. (2017). InterPro in 2017-beyond protein family and domain annotations. Nucleic Acids Research, 45(D1), D190–D199. doi:10.1093/nar/gkw1107
  • Frieden, T. R., Stephens, J. W., Thacker, S. B., Shaw, F. E., LaPete, M. A., Spriggs, S. R., … John Ward, G. W. (2010). Transmission of yellow fever vaccine virus through breast-feeding—Brazil. Centers for Disease Control and Prevention, 59(5), 130–132. Retrieved from http://www.cdc.gov/ncphi/disss/nndss/casedef/mumps_2008.htm.
  • Funderburg, N., Lederman, M. M., Feng, Z., Drage, M. G., Jadlowsky, J., Harding, C. V., … Sieg, S. F. (2007). Human -defensin-3 activates professional antigen-presenting cells via Toll-like receptors 1 and 2. Proceedings of the National Academy of Sciences of Sciences, 104(47), 18631–18635. doi:10.1073/pnas.0702130104
  • Garske, T., Van Kerkhove, M. D., Yactayo, S., Ronveaux, O., Lewis, R. F., Staples, J. E., Perea, W., & Ferguson, N. M., for the Yellow Fever Expert Committee. (2014). Yellow Fever in Africa: Estimating the burden of disease and impact of mass vaccination from outbreak and serological data. PLoS Medicine, 11(5), e1001638. doi:10.1371/journal.pmed.1001638
  • Gasteiger, E., Hoogland, C., Gattiker, A., Duvaud, S., Wilkins, M. R., Appel, R. D., & Bairoch, A. (2009). Protein identification and analysis tools on the ExPASy server. In J. M. Walker (Ed.), The Proteomics protocols handbook. Totowa, NJ: Humana Press. 10.1385/1-59259-890-0:571.
  • Giovanetti, M., de Mendonça, M. C. L., Fonseca, V., Mares-Guia, M. A., Fabri, A., Xavier, J., … de Filippis, A. M. B. (2019). Yellow fever virus re-emergence and spread in Southeast Brazil, 2016-2019. Journal of Virology, 94(1), e01623-19 . doi:10.1128/JVI.01623-19
  • Greenbaum, J., Sidney, J., Chung, J., Brander, C., Peters, B., & Sette, A. (2011). Functional classification of class II human leukocyte antigen (HLA) molecules reveals seven different supertypes and a surprising degree of repertoire sharing across supertypes. Immunogenetics, 63(6), 325–335. doi:10.1007/s00251-011-0513-0
  • Grote, A., Hiller, K., Scheer, M., Münch, R., Nörtemann, B., Hempel, D. C., & Jahn, D. (2005). JCat: A novel tool to adapt codon usage of a target gene to its potential expression host. Nucleic Acids Research, 33(Web Server), W526–31. doi:10.1093/nar/gki376
  • Gu, Y., Sun, X., Li, B., Huang, J., Zhan, B., & Zhu, X. (2017). Vaccination with a paramyosin-based multi-epitope vaccine elicits significant protective immunity against Trichinella spiralis infection in mice. Frontiers in Microbiology, 8, 1475. doi:10.3389/fmicb.2017.01475
  • Guruprasad, K., Reddy, B. V., & Pandit, M. W. (1990). Correlation between stability of a protein and its dipeptide composition: A novel approach for predicting in vivo stability of a protein from its primary sequence. Protein Engineering, Design and Selection, 4(2), 155–161. Retrieved from http://www.ncbi.nlm.nih.gov/pubmed/2075190. doi:10.1093/protein/4.2.155
  • Hahn, C. S., Dalrymple, J. M., Strauss, J. H., & Rice, C. M. (1987). Comparison of the virulent Asibi strain of yellow fever virus with the 17D vaccine strain derived from it. Proceedings of the National Academy of Sciences, 84(7), 2019–2023. doi:10.1073/pnas.84.7.2019
  • Hajighahramani, N., Nezafat, N., Eslami, M., Negahdaripour, M., Rahmatabadi, S. S., & Ghasemi, Y. (2017). Immunoinformatics analysis and in silico designing of a novel multi-epitope peptide vaccine against Staphylococcus aureus. Infection, Genetics and Evolution, 48, 83–94. doi:10.1016/j.meegid.2016.12.010
  • Hall, T. (2013). BioEdit version 7.2. 5. Carlsbad, CA: Ibis Biosciences. 10.1016/j.ifset.2004.06.001.
  • Heo, L., Park, H., & Seok, C. (2013). GalaxyRefine: Protein structure refinement driven by side-chain repacking. Nucleic Acids Research, 41(W1), W384–W388. doi:10.1093/nar/gkt458
  • Jenik, M., Parra, R. G., Radusky, L. G., Turjanski, A., Wolynes, P. G., & Ferreiro, D. U. (2012). Protein frustratometer: A tool to localize energetic frustration in protein molecules. Nucleic Acids Research, 40(W1), W348–W351. doi:10.1093/nar/gks447
  • Jennings, A. D., Gibson, C. A., Miller, B. R., Mathews, J. H., Mitchell, C. J., Roehrig, J. T., … Barrett, A. D. T. (1994). Analysis of a yellow fever virus isolated from a fatal case of vaccine-associated human encephalitis. Journal of Infectious Diseases, 169(3), 512–518. Retrieved from http://www.ncbi.nlm.nih.gov/pubmed/7908925. doi:10.1093/infdis/169.3.512
  • Jin, M. S., Kim, S. E., Heo, J. Y., Lee, M. E., Kim, H. M., Paik, S.-G., … Lee, J.-O. (2007). Crystal Structure of the TLR1-TLR2 heterodimer induced by binding of a tri-acylated lipopeptide. Cell, 130(6), 1071–1082. doi:10.1016/j.cell.2007.09.008
  • Johansson, M. A., Arana-Vizcarrondo, N., Biggerstaff, B. J., & Staples, J. E. (2010). Incubation periods of Yellow Fever Virus. The American Journal of Tropical Medicine and Hygiene, 83(1), 183–188. doi:10.4269/ajtmh.2010.09-0782
  • Karplus, M., & McCammon, J. A. (2002). Molecular dynamics simulations of biomolecules. Nature Structural Biology, 9(9), 646–652. doi:10.1038/nsb0902-646
  • Khan, M., Khan, S., Ali, A., Akbar, H., Sayaf, A. M., Khan, A., & Wei, D.-Q. (2019). Immunoinformatics approaches to explore Helicobacter Pylori proteome (Virulence Factors) to design B and T cell multi-epitope subunit vaccine. Scientific Reports, 9(1). Article ID: 13321. doi:10.1038/s41598-019-49354-z
  • Khromava, A. Y., Eidex, R. B., Weld, L. H., Kohl, K. S., Bradshaw, R. D., Chen, R. T., & Cetron, M. S. (2005). Yellow fever vaccine: An updated assessment of advanced age as a risk factor for serious adverse events. Vaccine, 23(25), 3256–3263. doi:10.1016/j.vaccine.2005.01.089
  • Kwok, S. C., Mant, C. T., & Hodges, R. S. (2002). Importance of secondary structural specificity determinants in protein folding: Insertion of a native β-sheet sequence into an α-helical coiled-coil. Protein Science, 11(6), 1519–1531. doi:10.1110/ps.4170102
  • Lang, J., Zuckerman, J., Clarke, P., Barrett, P., Kirkpatrick, C., & Blondeau, C. (1999). Comparison of the immunogenicity and safety of two 17D yellow fever vaccines. The American Journal of Tropical Medicine and Hygiene, 60(6), 1045–1050. doi:10.4269/ajtmh.1999.60.1045
  • Larkin, M. A., Blackshields, G., Brown, N. P., Chenna, R., McGettigan, P. A., McWilliam, H., … Higgins, D. G. (2007). Clustal W and Clustal X version 2.0. Bioinformatics, 23(21), 2947–2948. doi:10.1093/bioinformatics/btm404
  • Larsen, M. V., Lundegaard, C., Lamberth, K., Buus, S., Lund, O., & Nielsen, M. (2007). Large-scale validation of methods for cytotoxic T-lymphocyte epitope prediction. BMC Bioinformatics, 8(1), 424. 10.1186/1471-2105-8-424.
  • Lawrence, G. L., Burgess, M. A., & Kass, R. B. (2004). Age-related risk of adverse events following yellow fever vaccination in Australia. Communicable Diseases Intelligence Quarterly Report, 28(2), 244–248. Retrieved from http://www.ncbi.nlm.nih.gov/pubmed/15460963.
  • Li, X., Guo, L., Kong, M., Su, X., Yang, D., Zou, M., … Lu, L. (2015). Design and evaluation of a multi-epitope peptide of human metapneumovirus. Intervirology, 58(6), 403–412. doi:10.1159/000445059
  • Lin, C., Amberg, S. M., Chambers, T. J., & Rice, C. M. (1993). Cleavage at a novel site in the NS4A region by the yellow fever virus NS2B-3 proteinase is a prerequisite for processing at the downstream 4A/4B signalase site. Journal of Virology, 67(4), 2327–2335. Retrieved from http://www.ncbi.nlm.nih.gov/pubmed/8445732.
  • Lindern, J. J. V., Aroner, S., Barrett, N. D., Wicker, J. A., Davis, C. T., & Barrett, A. D. T. (2006). Genome analysis and phylogenetic relationships between east, central and west African isolates of Yellow fever virus. Journal of General Virology, 87, 895–907. 10.1099/vir.0.81236-0.
  • Livingston, B., Crimi, C., Newman, M., Higashimoto, Y., Appella, E., Sidney, J., & Sette, A. (2002). A rational strategy to design multiepitope immunogens based on multiple Th lymphocyte epitopes. The Journal of Immunology, 168(11), 5499–5506. doi:10.4049/jimmunol.168.11.5499
  • Lohia, N., & Baranwal, M. (2014). Conserved peptides containing overlapping CD4+ and CD8+ T-Cell Epitopes in the H1N1 influenza virus: An immunoinformatics approach. Viral Immunology, 27(5), 225–234. doi:10.1089/vim.2013.0135
  • Lovell, S. C., Davis, I. W., Arendall, W. B., de Bakker, P. I. W., Word, J. M., Prisant, M. G., … Richardson, D. C. (2003). Structure validation by Cα geometry: phi,psi and C beta deviation. Proteins: Structure, Function, and Bioinformatics, 50(3), 437–450. doi:10.1002/prot.10286
  • Maciel, M., Cruz, F., da, S. P., Cordeiro, M. T., da Motta, M. A., Cassemiro, K. M. S., de, M., Maia, R., de, C. C., … … Halia, R. (2015). A DNA Vaccine against Yellow Fever Virus: Development and Evaluation. PLOS Neglected Tropical Diseases, 9(4), e0003693. doi:10.1371/journal.pntd.0003693
  • Magnan, C. N., Zeller, M., Kayala, M. A., Vigil, A., Randall, A., Felgner, P. L., & Baldi, P. (2010). High-throughput prediction of protein antigenicity using protein microarray data. Bioinformatics, 26(23), 2936–2943. doi:10.1093/bioinformatics/btq551
  • Marfin, A. A., Eidex, R. S. B., Kozarsky, P. E., & Cetron, M. S. (2005). Yellow fever and Japanese encephalitis vaccines: Indications and complications. Infectious Disease Clinics of North America, 19(1), 151–168. doi:10.1016/j.idc.2004.11.004
  • Ministério da Saúde divulga balanço de um ano da febre amarela. (n.d.). Retrieved from http://portalms.saude.gov.br/noticias/agencia-saude/44483-ministerio-da-saude-divulga-balanco-de-um-ano-da-febre-amarela.
  • Minor, P. D. (2015). Live attenuated vaccines: Historical successes and current challenges. Virology, 479–480, 379–392. doi:10.1016/j.virol.2015.03.032
  • Mohan, T., Sharma, C., Bhat, A. A., & Rao, D. N. (2013). Modulation of HIV peptide antigen specific cellular immune response by synthetic α- and β-defensin peptides. Vaccine, 31(13), 1707–1716. doi:10.1016/j.vaccine.2013.01.041
  • Monath, T. P. (2007). Dengue and Yellow Fever — Challenges for the development and use of vaccines. New England Journal of Medicine, 357(22), 2222–2225. doi:10.1056/NEJMp0707161
  • Monath, T. P., Lee, C. K., Julander, J. G., Brown, A., Beasley, D. W., Watts, D. M., … Trent, D. W. (2010). Inactivated yellow fever 17D vaccine: Development and nonclinical safety, immunogenicity and protective activity. Vaccine, 28(22), 3827–3840. doi:10.1016/j.vaccine.2010.03.023
  • Monath, T. P., & Vasconcelos, P. F. C. (2015). Yellow fever. Journal of Clinical Virology, 64, 160–173. doi:10.1016/j.jcv.2014.08.030
  • Murphy, D., Reche, P., & Flower, D. R. (2019). Selection-based design of in silico dengue epitope ensemble vaccines. Chemical Biology and Drug Design, 93(1), 21–28. 10.1111/cbdd.13357.
  • Mutebi, J. P., Wang, H., Li, L., Bryant, J. E., & Barrett, A. D. (2001). Phylogenetic and evolutionary relationships among yellow fever virus isolates in Africa. Journal of Virology, 75(15), 6999–7008. doi:10.1128/JVI.75.15.6999-7008.2001
  • Narula, A., Pandey, R. K., Khatoon, N., Mishra, A., & Prajapati, V. K. (2018). Excavating chikungunya genome to design B and T cell multi-epitope subunit vaccine using comprehensive immunoinformatics approach to control chikungunya infection. Infection, Genetics and Evolution, 61, 4–15. doi:10.1016/j.meegid.2018.03.007
  • Naz, K., Naz, A., Ashraf, S. T., Rizwan, M., Ahmad, J., Baumbach, J., & Ali, A. (2019). PanRV: Pangenome-reverse vaccinology approach for identifications of potential vaccine candidates in microbial pangenome. BMC Bioinformatics, 20(1), 123. doi:10.1186/s12859-019-2713-9
  • Nezafat, N., Ghasemi, Y., Javadi, G., Khoshnoud, M. J., & Omidinia, E. (2014). A novel multi-epitope peptide vaccine against cancer: An in silico approach. Journal of Theoretical Biology, 349, 121–134. doi:10.1016/j.jtbi.2014.01.018
  • Nezafat, N., Karimi, Z., Eslami, M., Mohkam, M., Zandian, S., & Ghasemi, Y. (2016). Designing an efficient multi-epitope peptide vaccine against Vibrio cholerae via combined immunoinformatics and protein interaction based approaches. Computational Biology and Chemistry, 62, 82–95. doi:10.1016/j.compbiolchem.2016.04.006
  • Nishioka, S., Nunes-Araújo, F. R., Pires, W. P., Silva, F. A., & Costa, H. L. (1998). Yellow fever vaccination during pregnancy and spontaneous abortion: A case-control study. Tropical Medicine & International Health, 3(1), 29–33. Retrieved from http://www.ncbi.nlm.nih.gov/pubmed/9484965. doi:10.1046/j.1365-3156.1998.00164.x
  • Ode, H., Nakashima, M., Kitamura, S., Sugiura, W., & Sato, H. (2012). Molecular dynamics simulation in virus research. Frontiers in Microbiology, 3, 258. doi:10.3389/fmicb.2012.00258
  • Paho. (2018). Epidemiological Update Yellow Fever Situation summary in the Americas. Retrieved from http://www.paho.xn–orgpaho-qja6263e/WHO,2018.
  • Pandey, R. K., Kumar Bhatt, T., & Prajapati, V. K. (2018). Novel immunoinformatics approaches to design multi-epitope subunit vaccine for Malaria by investigating anopheles salivary protein OPEN. Scientific Reports, 8(1), 1125. doi:10.1038/s41598-018-19456-1
  • Paules, C. I., & Fauci, A. S. (2017). Yellow Fever — Once again on the radar screen in the Americas. New England Journal of Medicine, 376(15), 1397–1399. doi:10.1056/NEJMp1702172
  • Ponomarenko, J., Bui, H.-H., Li, W., Fusseder, N., Bourne, P. E., Sette, A., & Peters, B. (2008). ElliPro: A new structure-based tool for the prediction of antibody epitopes. BMC Bioinformatics, 9(1), 514. 10.1186/1471-2105-9-514.
  • Porudominsky, R., & Gotuzzo, E. H. (2018). Yellow fever vaccine and risk of developing serious adverse events: A systematic review. Revista Panamericana de Salud Pública, 42, e75. doi:10.26633/RPSP.2018.75
  • Pritam, M., Singh, G., Swaroop, S., Singh, A. K., & Singh, S. P. (2019). Exploitation of reverse vaccinology and immunoinformatics as promising platform for genome-wide screening of new effective vaccine candidates against Plasmodium falciparum. BMC Bioinformatics, 19(S13), 468. doi:10.1186/s12859-018-2482-x
  • Pulendran, B. (2009). Learning immunology from the yellow fever vaccine: Innate immunity to systems vaccinology. Nature Reviews Immunology, 9(10), 741–747. doi:10.1038/nri2629
  • Pulendran, B., Miller, J., Querec, T. D., Akondy, R., Moseley, N., Laur, O., … Ahmed, R. (2008). Case of yellow fever vaccine–associated viscerotropic disease with prolonged viremia, robust adaptive immune responses, and polymorphisms in CCR5 and RANTES genes. The Journal of Infectious Diseases, 198(4), 500–507. doi:10.1086/590187
  • Rana, A., & Akhter, Y. (2016). A multi-subunit based, thermodynamically stable model vaccine using combined immunoinformatics and protein structure based approach. Immunobiology, 221(4), 544–557. doi:10.1016/j.imbio.2015.12.004
  • Rana, A., Thakur, S., Kumar, G., & Akhter, Y. (2018). Recent trends in system-scale integrative approaches for discovering protective antigens against mycobacterial pathogens. Frontiers in Genetics, 9, 572. doi:10.3389/fgene.2018.00572
  • Rappuoli, R. (2001). Reverse vaccinology, a genome-based approach to vaccine development. Vaccine, 19(17–19), 2688–2691. doi:10.1016/S0264-410X(00)00554-5
  • Rice, C., Lenches, E., Shin, E. S., Sheets, R., & Strauss, J. (1985). Nucleotide sequence of yellow fever virus: Implications for flavivirus gene expression and evolution. Science, 229(4715), 726–733. doi:10.1126/science.4023707
  • RTS,S Clinical Trials Partnership. (2015). Efficacy and safety of RTS,S/AS01 malaria vaccine with or without a booster dose in infants and children in Africa: Final results of a phase 3, individually randomised, controlled trial. The Lancet, 386(9988), 31–45. doi:10.1016/S0140-6736(15)60721-8
  • Ruiz-Linares, A., Cahour, A., Després, P., Girard, M., & Bouloy, M. (1989). Processing of yellow fever virus polyprotein: Role of cellular proteases in maturation of the structural proteins. Journal of Virology, 63(10), 4199–4209. Retrieved from http://www.ncbi.nlm.nih.gov/pubmed/2674479.
  • Rutkowski, K., Ewan, P. W., & Nasser, S. M. (2013). Administration of Yellow Fever Vaccine in patients with egg allergy. International Archives of Allergy and Immunology, 161(3), 274–278. doi:10.1159/000346350
  • Saadi, M., Karkhah, A., & Nouri, H. R. (2017). Development of a multi-epitope peptide vaccine inducing robust T cell responses against brucellosis using immunoinformatics based approaches. Infection, Genetics and Evolution, 51, 227–234. doi:10.1016/j.meegid.2017.04.009
  • Sabetian, S., Nezafat, N., Dorosti, H., Zarei, M., & Ghasemi, Y. (2019). Exploring dengue proteome to design an effective epitope-based vaccine against dengue virus. Journal of Biomolecular Structure and Dynamics, 37(10), 2546–2563. doi:10.1080/07391102.2018.1491890
  • Saha, S., & Raghava, G. P. S. (2006). AlgPred: Prediction of allergenic proteins and mapping of IgE epitopes. Nucleic Acids Research, 34(Web Server), W202–9. doi:10.1093/nar/gkl343
  • Shearer, F. M., Longbottom, J., Browne, A. J., Pigott, D. M., Brady, O. J., Kraemer, M. U. G., … Golding, N. (2018). Existing and potential infection risk zones of yellow fever worldwide: A modelling analysis. The Lancet Global Health, 6(3), e270–e278. doi:10.1016/S2214-109X(18)30024-X
  • Shearer, F. M., Moyes, C. L., Pigott, D. M., Brady, O. J., Marinho, F., Deshpande, A., … Reiner, R. C. (2017). Global yellow fever vaccination coverage from 1970 to 2016: An adjusted retrospective analysis. The Lancet Infectious Diseases, 17(11), 1209–1217. doi:10.1016/S1473-3099(17)30419-X
  • Shey, R. A., Ghogomu, S. M., Esoh, K. K., Nebangwa, N. D., Shintouo, C. M., Nongley, N. F., … Souopgui, J. (2019). In-silico design of a multi-epitope vaccine candidate against onchocerciasis and related filarial diseases. Scientific Reports, 9(1), 4409. doi:10.1038/s41598-019-40833-x
  • Simmonds, P., Becher, P., Bukh, J., Gould, E. A., Meyers, G., Monath, T., Muerhoff, S., & Stapleton, J. T., ICTV Report Consortium. (2017). ICTV Virus Taxonomy Profile: Flaviviridae ICTV Virus Taxonomy Profiles. Journal of General Virology, 98(1), 2–3. doi:10.1099/jgv.0.000672
  • Smith, H. H., Penna, H. A., & Paoliello, A. (1938). Yellow Fever Vaccination with Cultured Virus (17D) without Immune Serum 1. The American Journal of Tropical Medicine and Hygiene, s1-18(5), 437–468. doi:10.4269/ajtmh.1938.s1-18.437
  • Staples, J. E., Monath, T. P., Gershman, M. D., & Barrett, A. D. T. (2018). 63 - Yellow Fever Vaccines. Plotkin’s Vaccines. (7th ed.). Netherlands: Elsevier Inc. https://doi.org/10.1016/B978-0-323-35761-6.00063-8.
  • Takahashi, H., Cease, K. B., & Berzofsky, J. A. (1989). Identification of proteases that process distinct epitopes on the same protein. Journal of Immunology, 142, 2221–2229.
  • The UniProt Consortium. (2015). UniProt: A hub for protein information. Nucleic Acids Research, 43(D1), D204–D212. 10.1093/nar/gku989.
  • Theiler, M., & Smith, H. H. (1937). The use of Yellow Fever Virus modified by in vitro cultivation for human immunization. The Journal of Experimental Medicine, 65(6), 787–800. doi:10.1084/jem.65.6.787
  • Torchala, M., Moal, I. H., Chaleil, R. A. G., Fernandez-Recio, J., & Bates, P. A. (2013). SwarmDock: A server for flexible protein-protein docking. Bioinformatics, 29(6), 807–809. doi:10.1093/bioinformatics/btt038
  • Traiber, C., Amaral, P. C., Ritter, V. R. F., & Winge, A. (2011). Infant meningoencephalitis probably caused by yellow fever vaccine virus transmitted via breastmilk. Jornal de Pediatria, 0(0), 0–0. doi:10.2223/JPED.2067
  • Tsai, T. F., Paul, R., Lynberg, M. C., & Letson, G. W. (1993). Congenital yellow fever virus infection after immunization in pregnancy. Journal of Infectious Diseases, 168(6), 1520–1523. Retrieved from http://www.ncbi.nlm.nih.gov/pubmed/8245539. doi:10.1093/infdis/168.6.1520
  • Ul-Rahman, A., & Shabbir, M. A. B. (2019). In silico analysis for development of epitopes-based peptide vaccine against Alkhurma hemorrhagic fever virus. Journal of Biomolecular Structure and Dynamics, 1–13. doi:10.1080/07391102.2019.1651673
  • Van Der Spoel, D., Lindahl, E., Hess, B., Groenhof, G., Mark, A. E., & Berendsen, H. J. C. (2005). GROMACS: Fast, flexible, and free. Journal of Computational Chemistry, 26(16), 1701–1718. doi:10.1002/jcc.20291
  • Velders, M. P., Weijzen, S., Eiben, G. L., Elmishad, A. G., Kloetzel, P. M., Higgins, T., … Kast, W. M. (2001). Defined flanking spacers and enhanced proteolysis is essential for eradication of established tumors by an epitope string DNA vaccine. The Journal of Immunology, 166(9), 5366–5373. doi:10.4049/jimmunol.166.9.5366
  • Vita, R., Mahajan, S., Overton, J. A., Dhanda, S. K., Martini, S., Cantrell, J. R., … Peters, B. (2019). The Immune Epitope Database (IEDB): 2018 update. Nucleic Acids Research, 47(D1), D339–343. doi:10.1093/nar/gky1006
  • Wang, E., Weaver, S. C., Shope, R. E., Tesh, R. B., Watts, D. M., & Barrett, A. D. T. (1996). Genetic variation in yellow fever virus: Duplication in the 3’ noncoding region of strains from Africa. Virology, 225(2), 274–281. doi:10.1006/viro.1996.0601
  • Wang, L., Zhou, P., Fu, X., Zheng, Y., Huang, S., Fang, B., … Li, S. (2016). Yellow fever virus: Increasing imported cases in China. Journal of Infection, 73 (4), 377–379. doi:10.1016/j.jinf.2016.07.003
  • Wang, S., Li, W., Liu, S., & Xu, J. (2016). RaptorX-Property: A web server for protein structure property prediction. Nucleic Acids Research, 44(W1), W430–W435. doi:10.1093/nar/gkw306
  • Ward, J. J., McGuffin, L. J., Buxton, B. F., & Jones, D. T. (2003). Secondary structure prediction with support vector machines. Bioinformatics, 19(13), 1650–1655. doi:10.1093/bioinformatics/btg223
  • Weiskopf, D., Angelo, M. A., de Azeredo, E. L., Sidney, J., Greenbaum, J. A., Fernando, A. N., … Sette, A. (2013). Comprehensive analysis of dengue virus-specific responses supports an HLA-linked protective role for CD8+ T cells. Proceedings of the National Academy of Sciences, 110(22), E2046–E2053. doi:10.1073/pnas.1305227110
  • WHO. (2014). List of countries, territories and areas - Yellow fever vaccination requirements and recommendations; malaria situation; and other vaccination requirements. Retrieved from http://www.who.int/ith/YFrisk.pdf.
  • Wilder-Smith, A., & Monath, T. P. (2017). Responding to the threat of urban yellow fever outbreaks. The Lancet Infectious Diseases, 17(3), 248–250. doi:10.1016/S1473-3099(16)30588-6
  • World Health Organization. (2013). Vaccines and vaccination against yellow fever. WHO Position Paper - June 2013. Weekly Epidemiological Record, 88, 269–284. Retrieved from http://www.who.int/wer.
  • Yano, A., Onozuka, A., Asahi-Ozaki, Y., Imai, S., Hanada, N., Miwa, Y., & Nisizawa, T. (2005). An ingenious design for peptide vaccines. Vaccine, 23(17–18), 2322–2326. doi:10.1016/j.vaccine.2005.01.031
  • Zhang, L. (2018). Multi-epitope vaccines: A promising strategy against tumors and viral infections. Cellular & Molecular Immunology, 15, 182–184. doi:10.1038/cmi.2017.92

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.