222
Views
3
CrossRef citations to date
0
Altmetric
Research Articles

Cellular prion protein gene polymorphisms linked to differential scrapie susceptibility correlate with distinct residue connectivity between secondary structure elements

, , , &
Pages 129-139 | Received 02 Aug 2019, Accepted 12 Dec 2019, Published online: 08 Jan 2020

References

  • Adrover, M., Pauwels, K., Prigent, S., de Chiara, C., Xu, Z., Chapuis, C., … Rezaei, H. (2010). Prion fibrillization is mediated by a native structural element that comprises helices H2 and H3. Journal of Biological Chemistry, 285(27), 21004–21012. doi:10.1074/jbc.M110.111815
  • Bates, D., Mächler, M., Bolker, B., & Walker, S. (2015). Fitting linear mixed-effects models using lme4. Journal of Statistical Software, 67(1), 1–48. doi:10.18637/jss.v067.i01
  • Belt, P. B. G. M., Muileman, I. H., Schreuder, B. E. C., Bos-De Ruijter, J., Gielkens, A. L. J., & Smits, M. A. (1995). Identification of five allelic variants of the sheep PrP gene and their association with natural scrapie. Journal of General Virology, 76(3), 509–517. doi:10.1099/0022-1317-76-3-509
  • Blinov, N., Berjanskii, M., Wishart, D. S., & Stepanova, M. (2009). Structural domains and main-chain flexibility in prion proteins. Biochemistry, 48(7), 1488–1497. doi:10.1021/bi802043h
  • Bossers, A., Schreuder, B. E. C., Muileman, I. H., Belt, P. B. G. M., & Smits, M. A. (1996). PrP genotype contributes to determining survival times of sheep with natural scrapie. Journal of General Virology, 77(10), 2669–2673. doi:10.1099/0022-1317-77-10-2669
  • Bruce, M. E., Will, R. G., Ironside, J. W., McConnell, I., Drummond, D., Suttie, A., … Bostock, C. J. (1997). Transmissions to mice indicate that “new variant” CJD is caused by the BSE agent. Nature, 389(6650), 498–501. doi:10.1038/39057
  • Bujdoso, R., Burke, D. F., & Thackray, A. M. (2005). Structural differences between allelic variants of the ovine prion protein revealed by molecular dynamics simulations. Proteins: Structure, Function, and Bioinformatics, 61(4), 840–849. doi:10.1002/prot.20755
  • Burke, C., Walsh, D., Steele, A., Agrimi, U., Di Bari, M. A., Watts, J. C., & Supattapone, S. (2019). Full restoration of specific infectivity and strain properties from pure mammalian prion protein. PLoS Pathogens, 15(3), e1007662. doi:10.1371/journal.ppat.1007662
  • Bussi, G., Donadio, D., & Parrinello, M. (2007). Canonical sampling through velocity rescaling. The Journal of Chemical Physics, 126(1), 14101. doi:10.1063/1.2408420
  • Cassard, H., Torres, J.-M., Lacroux, C., Douet, J.-Y., Benestad, S. L., Lantier, F., … Andréoletti, O. (2014). Evidence for zoonotic potential of ovine scrapie prions. Nature Communications, 5(1), 5821. doi:10.1038/ncomms6821
  • CFSPH. (2016). Scrapie. Center for food security and public health technical factsheets, 119. Ames, IA: Iowa State University Center for Food Security and Public Health. http://www.cfsph.iastate.edu/Factsheets/pdfs/scrapie.pdf.
  • Chakroun, N., Fornili, A., Prigent, S., Kleinjung, J., Dreiss, C. A., Rezaei, H., & Fraternali, F. (2013). Decrypting prion protein conversion into a β-rich conformer by molecular dynamics. Journal of Chemical Theory and Computation, 9(5), 2455–2465. doi:10.1021/ct301118j
  • Damberger, F. F., Christen, B., Pérez, D. R., Hornemann, S., & Wüthrich, K. (2011). Cellular prion protein conformation and function. Proceedings of the National Academy of Sciences of Sciences, 108(42), 17308–17313. doi:10.1073/pnas.1106325108
  • Deleault, N. R., Harris, B. T., Rees, J. R., & Supattapone, S. (2007). Formation of native prions from minimal components in vitro. Proceedings of the National Academy of Sciences of Sciences, 104(23), 9741–9746. doi:10.1073/pnas.0702662104
  • DeMarco, M., & Daggett, V. (2007). Molecular mechanism for low pH triggered misfolding of the human prion protein. Biochemistry, 46(11), 3045–3054. doi:10.1021/bi0619066
  • Dima, R. I., & Thirumalai, D. (2002). Exploring the propensities of helices in PrPC to form β sheet using NMR structures and sequence alignments. Biophysical Journal, 83(3), 1268–1280. doi:10.1016/S0006-3495(02)73899-X
  • EFSA-BIOHAZ. (2015). Scientific opinion on a request for a review of a scientific publication concerning the zoonotic potential of ovine scrapie prions. EFSA Journal, 13(8), 4197. doi:10.2903/j.efsa.2015.4197
  • Eghiaian, F., Grosclaude, J., Lesceu, S., Debey, P., Doublet, B., Treguer, E., … Knossow, M. (2004). Insight into the PrPC -> PrPSc conversion from the structures of antibody-bound ovine prion scrapie-susceptibility variants. Proceedings of the National Academy of Sciences, 101(28), 10254–10259. doi:10.1073/pnas.0400014101
  • Essmann, U., Perera, L., Berkowitz, M. L., Darden, T., Lee, H., & Pedersen, L. G. (1995). A smooth particle mesh Ewald method. The Journal of Chemical Physics, 103(19), 8577–8593. doi:10.1063/1.470117
  • Fitzmaurice, T. J., Burke, D. F., Hopkins, L., Yang, S., Yu, S., Sy, M.-S., … Bujdoso, R. (2008). The stability and aggregation of ovine prion protein associated with classical and atypical scrapie correlates with the ease of unwinding of helix-2. Biochemical Journal, 409(2), 367–375. doi:10.1042/BJ20071122
  • Gao, Y., Zhu, T., Zhang, C., Zhang, J. Z. H., & Mei, Y. (2018). Comparison of the unfolding and oligomerization of human prion protein under acidic and neutral environments by molecular dynamics simulations. Chemical Physics Letters, 706, 594–600. doi:10.1016/j.cplett.2018.07.014
  • Girvan, M., & Newman, M. E. J. (2002). Community structure in social and biological networks. Proceedings of the National Academy of Sciences of Sciences, 99(12), 7821–7826. doi:10.1073/pnas.122653799
  • Goedert, M. (2015). Alzheimer’s and Parkinson’s diseases: The prion concept in relation to assembled Aβ, tau, and α-synuclein. Science, 349(6248), 1255555. doi:10.1126/science.1255555
  • Goldmann, W., Hunter, N., Smith, G., Foster, J., & Hope, J. (1994). PrP genotype and agent effects in scrapie: Change in allelic interaction with different isolates of agent in sheep, a natural host of scrapie. Journal of General Virology, 75(5), 989–995. doi:10.1099/0022-1317-75-5-989
  • Gorfe, A. A., & Caflisch, A. (2007). Ser170 controls the conformational multiplicity of the loop 166–175 in prion proteins: Implication for conversion and species barrier. The FASEB Journal, 21(12), 3279–3287. doi:10.1096/fj.07-8292com
  • Gossert, A. D., Bonjour, S., Lysek, D. A., Fiorito, F., & Wuthrich, K. (2005). Prion protein NMR structures of elk and of mouse/elk hybrids. Proceedings of the National Academy of Sciences, 102(3), 646–650. doi:10.1073/pnas.0409008102
  • Groschup, M. H., Lacroux, C., Buschmann, A., Lühken, G., Mathey, J., Eiden, M., … Torres, J. M. (2007). Classic scrapie in sheep with the ARR/ARR prion genotype in Germany and France. Emerging Infectious Diseases, 13(8), 1201–1207. doi:10.3201/eid1308.070077
  • Groveman, B. R., Dolan, M. A., Taubner, L. M., Kraus, A., Wickner, R. B., & Caughey, B. (2014). Parallel in-register intermolecular β-sheet architectures for prion-seeded prion protein (PrP) amyloids. Journal of Biological Chemistry, 289(35), 24129–24142. doi:10.1074/jbc.M114.578344
  • Hess, B., Bekker, H., Berendsen, H. J. C., & Fraaije, J. G. E. M. (1997). LINCS: A linear constraint solver for molecular simulations. Journal of Computational Chemistry, 18(12), 1463–1472. doi:10.1002/(SICI)1096-987X(199709)18:12 < 1463::AID-JCC4 > 3.0.CO;2-H
  • Hess, B., Kutzner, C., Van Der Spoel, D., & Lindahl, E. (2008). GROMACS 4: Algorithms for highly efficient, load-balanced, and scalable molecular simulation. Journal of Chemical Theory and Computation, 4(3), 435–447. doi:10.1021/ct700301q
  • Huang, D., & Caflisch, A. (2015). Evolutionary conserved Tyr169 stabilizes the β2-α2 loop of the prion protein. Journal of the American Chemical Society, 137(8), 2948–2957. doi:10.1021/ja511568m
  • Ji, H.-F., Zhang, H.-Y., & Shen, L. (2005). The role of electrostatic interaction in triggering the unraveling of stable Helix 1 in normal prion protein. A molecular dynamics simulation investigation. Journal of Biomolecular Structure and Dynamics, 22(5), 563–570. doi:10.1080/07391102.2005.10507026
  • Jorgensen, W. L., Chandrasekhar, J., Madura, J. D., Impey, R. W., & Klein, M. L. (1983). Comparison of simple potential functions for simulating liquid water. The Journal of Chemical Physics, 79(2), 926–935. doi:10.1063/1.445869
  • Kabsch, W., & Sander, C. (1983). Dictionary of protein secondary structure: Pattern recognition of hydrogen‐bonded and geometrical features. Biopolymers, 22(12), 2577–2637. doi:10.1002/bip.360221211
  • Klug, G. M. J. A., Wand, H., Simpson, M., Boyd, A., Law, M., Masters, C. L., … Collins, S. J. (2013). Intensity of human prion disease surveillance predicts observed disease incidence. Journal of Neurology, Neurosurgery & Psychiatry, 84(12), 1372–1377. doi:10.1136/jnnp-2012-304820
  • Kurt, T. D., Jiang, L., Bett, C., Eisenberg, D., & Sigurdson, C. J. (2014). A proposed mechanism for the promotion of prion conversion involving a strictly conserved tyrosine residue in the β2–α2 loop of PrPC. Journal of Biological Chemistry, 289(15), 10660–10667. doi:10.1074/jbc.M114.549030
  • Leontiadou, H., Galdadas, I., Athanasiou, C., & Cournia, Z. (2018). Insights into the mechanism of the PIK3CA E545K activating mutation using MD simulations. Scientific Reports, 8(1), 15544. doi:10.1038/s41598-018-27044-6
  • Li, H., Yao, X.-Q., & Grant, B. J. (2018). Comparative structural dynamic analysis of GTPases. PLOS Computational Biology, 14(11), e1006364. doi:10.1371/journal.pcbi.1006364
  • Lindorff-Larsen, K., Piana, S., Palmo, K., Maragakis, P., Klepeis, J. L., Dror, R. O., & Shaw, D. E. (2010). Improved side-chain torsion potentials for the Amber ff99SB protein force field. Proteins: Structure, Function, and Bioinformatics, 78(8), 1950–1958. doi:10.1002/prot.22711
  • Marsh, R. F., Kincaid, A. E., Bessen, R. A., & Bartz, J. C. (2005). Interspecies transmission of chronic wasting disease prions to squirrel monkeys (Saimiri sciureus). Journal of Virology, 79(21), 13794–13796. doi:10.1128/JVI.79.21.13794-13796.2005
  • Meli, M., Gasset, M., & Colombo, G. (2011). Dynamic diagnosis of familial prion diseases supports the β2–α2 loop as a universal interference target. PLoS One, 6(4), e19093. doi:10.1371/journal.pone.0019093
  • Parrinello, M., & Rahman, A. (1980). Crystal structure and pair potentials: A molecular-dynamics study. Physical Review Letters, 45(14), 1196–1199. doi:10.1103/PhysRevLett.45.1196
  • Prusiner, S. B., Scott, M. R., DeArmond, S. J., & Cohen, F. E. (1998). Prion protein biology. Cell, 93(3), 337–348. doi:10.1016/S0092-8674(00)81163-0
  • R-Core-Team. (2013). R: A language and environment for statistical computing. Vienna, Austria: R Foundation for Statistical Computing. http://www.r-project.org/.
  • Rezaei, H., Choiset, Y., Eghiaian, F., Treguer, E., Mentre, P., Debey, P., … Haertle, T. (2002). Amyloidogenic unfolding intermediates differentiate sheep prion protein variants. Journal of Molecular Biology, 322(4), 799–814. doi:10.1016/S0022-2836(02)00856-2
  • Rezaei, H., Eghiaian, F., Perez, J., Doublet, B., Choiset, Y., Haertle, T., & Grosclaude, J. (2005). Sequential generation of two structurally distinct ovine prion protein soluble oligomers displaying different biochemical reactivities. Journal of Molecular Biology, 347(3), 665–679. doi:10.1016/j.jmb.2005.01.043
  • Rigoli, M., Spagnolli, G., Faccioli, P., Requena, J. R., & Biasini, E. (2019). Ok Google, how could I design therapeutics against prion diseases? Current Opinion in Pharmacology, 44, 39–45. doi:10.1016/j.coph.2019.03.015
  • Sethi, A., Eargle, J., Black, A. A., & Luthey-Schulten, Z. (2009). Dynamical networks in tRNA: Protein complexes. Proceedings of the National Academy of Sciences of Sciences, 106(16), 6620–6625. doi:10.1073/pnas.0810961106
  • Sigurdson, C. J., Bartz, J. C., & Glatzel, M. (2019). Cellular and molecular mechanisms of prion disease. Annual Review of Pathology: Mechanisms of Disease, 14(1), 497–516. doi:10.1146/annurev-pathmechdis-012418-013109
  • Sigurdson, C. J., Nilsson, K. P. R., Hornemann, S., Heikenwalder, M., Manco, G., Schwarz, P., … Aguzzi, A. (2009). De novo generation of a transmissible spongiform encephalopathy by mouse transgenesis. Proceedings of the National Academy of Sciences, 106(1), 304–309. doi:10.1073/pnas.0810680105
  • Skjærven, L., Yao, X.-Q., Scarabelli, G., & Grant, B. J. (2014). Integrating protein structural dynamics and evolutionary analysis with Bio3D. BMC Bioinformatics, 15 (1), 399. doi:10.1186/s12859-014-0399-6
  • Soto, C. (2012). Transmissible proteins: Expanding the prion heresy. Cell, 149(5), 968–977. doi:10.1016/j.cell.2012.05.007
  • Spagnolli, G., Rigoli, M., Orioli, S., Sevillano, A. M., Faccioli, P., Wille, H., … Requena, J. R. (2019). Full atomistic model of prion structure and conversion. PLOS Pathogens, 15(7), e1007864. doi:10.1371/journal.ppat.1007864
  • Tycko, R., Savtchenko, R., Ostapchenko, V. G., Makarava, N., & Baskakov, I. V. (2010). The α-Helical C-terminal domain of full-length recombinant PrP converts to an in-register parallel β-sheet structure in PrP fibrils: Evidence from solid state nuclear magnetic resonance. Biochemistry, 49(44), 9488–9497. doi:10.1021/bi1013134
  • Ulvund, M. J., Bratberg, B., Osland, A., & Tranulis, M. A. (1999). Prion protein gene polymorphisms in sheep with natural scrapie and healthy controls in Norway. Journal of General Virology, 80(4), 1073–1077. doi:10.1099/0022-1317-80-4-1073
  • Uslupehlivan, M., Deveci, R., & Ün, C. (2018). In silico investigation of the prion protein glycosylation profiles in relation to scrapie disease resistance in domestic sheep (Ovis aries). Molecular and Cellular Probes, 42, 1–9. doi:10.1016/j.mcp.2018.09.004
  • Van der Rest, G., Rezaei, H., & Halgand, F. (2017). Monitoring conformational landscape of ovine prion protein monomer using ion mobility coupled to mass spectrometry. Journal of the American Society for Mass Spectrometry, 28(2), 303–314. doi:10.1007/s13361-016-1522-x

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.