280
Views
2
CrossRef citations to date
0
Altmetric
Research Articles

Molecular dynamics simulations of cognate and non-cognate AspRS-tRNAAsp complexes

, , &
Pages 493-501 | Received 25 Mar 2019, Accepted 27 Dec 2019, Published online: 20 Jan 2020

References

  • Archontis, G., Simonson, T., & Karplus, M. (2001). Binding free energies and free energy components from molecular dynamics and Poisson-Boltzmann calculations. Application to amino acid recognition by aspartyl-tRNA synthetase. Journal of molecular Biology, 306(2), 307–327. doi:10.1006/jmbi.2000.4285
  • Bakan, A., Meireles, L. M., & Bahar, I. (2011). ProDy: Protein dynamics inferred from theory and experiments. Bioinformatics, 27(11), 1575–1577. doi:10.1093/bioinformatics/btr168
  • Becker, H. D., Reinbolt, J., Kreutzer, R., Giegé, R., & Kern, D. (1997). Existence of two distinct aspartyl-tRNA synthetases in Thermus thermophilus. Structural and biochemical properties of the two enzymes. Biochemistry, 36(29), 8785–8797. doi:10.1021/bi970392v
  • Berendsen, H. J. C., Postma, J. P. M., van Gunsteren, W. F., DiNola, A., & Haak, J. R. (1984). Molecular dynamics with coupling to an external bath. The Journal of Chemical Physics, 81(8), 3684–3690. doi:10.1063/1.448118
  • Briand, C., Poterszman, A., Eiler, S., Webster, G., Thierry, J.-C., & Moras, D. (2000). An intermediate step in the recognition of tRNA(Asp) by aspartyl-tRNA synthetase. Journal of molecular Biology, 299(4), 1051–1060. doi:10.1006/jmbi.2000.3819
  • Connolly, M. (1983). Analytical molecular surface calculation. Journal of Applied Crystallography, 16(5), 548–558. doi:10.1107/S0021889883010985
  • Cusack, S. (1993). Sequence, structure and evolutionary relationships between class 2 aminoacyl-tRNA synthetases: An update. Biochimie, 75(12), 1077–1081. doi:10.1016/0300-9084(93)90006-E
  • Cusack, S. (1995). Eleven down and nine to go. Nature structural Biology, 2(10), 824–831. doi:10.1038/nsb1095-824
  • Darden, T., York, D., & Pedersen, L. (1993). Particle mesh Ewald: An N.log(N) method for Ewald sums in large systems. The Journal of Chemical Physics, 98(12), 10089–10092. doi:10.1063/1.464397
  • Dietrich, A., Giegé, R., Comarmond, M. B., Thierry, J. C., & Moras, D. (1980). Crystallographic studies on the aspartyl-tRNA synthetase-tRNAAsp system from yeast. The crystalline aminoacyl-tRNA synthetase. Journal of molecular Biology, 138(1), 129–135. doi:10.1016/S0022-2836(80)80008-8
  • Dutta, S., & Nandi, N. (2015). Dynamics of the active sites of dimeric seryl tRNA synthetase from Methanopyrus kandleri. The journal of physical Chemistry B, 119(34), 10832–10848. doi:10.1021/jp511585w
  • Dutta, S., & Nandi, N. (2019). Classical molecular dynamics simulation of seryl tRNA synthetase and threonyl tRNA synthetase bound with tRNA and aminoacyl adenylate. Journal of biomolecular structure and Dynamics , 37(2), 336–358. doi:10.1080/07391102.2018.1426498
  • Ebel, J. P., Giegé, R., Bonnet, J., Kern, D., Befort, N., Bollack, C., … Dirheimer, G. (1973). Factors determining the specificity of the tRNA aminoacylation reaction. Non-absolute specificity of tRNA-aminoacyl-tRNA synthetase recognition and particular importance of the maximal velocity. Biochimie, 55(5), 547–557. doi:10.1016/S0300-9084(73)80415-8
  • Eiler, S., Dock-Bregeon, A.-C., Moulinier, L., Thierry, J.-C., & Moras, D. (1999). Synthesis of aspartyl-tRNA(Asp) in Escherichia coli–a snapshot of the second step. The EMBO Journal, 18(22), 6532–6541. doi:10.1093/emboj/18.22.6532
  • Eriani, G., Cavarelli, J., Martin, F., Ador, L., Rees, B., Thierry, J.-C., … Moras, D. (1995). The class II aminoacyl-tRNA synthetases and their active site: Evolutionary conservation of an ATP binding site. Journal of molecular Evolution, 40(5), 499–508. doi:10.1007/BF00166618
  • Eriani, G., Delarue, M., Poch, O., Gangloff, J., & Moras, D. (1990). Partition of tRNA synthetases into two classes based on mutually exclusive sets of sequence motifs. Nature, 347(6289), 203–206. doi:10.1038/347203a0
  • Giege, R., Puglisi, J. D., & Florentz, C. (1993). tRNA structure and aminoacylation efficiency. Progress in nucleic acid research and molecular Biology, 45, 129–206.
  • Hartigan, J. A., & Wong, M. A. (1979). Algorithm AS 136: A K-Means Clustering Algorithm. Applied Statistics ), 28(1), 100–108. doi:10.2307/2346830
  • Hornak, V., Abel, R., Okur, A., Strockbine, B., Roitberg, A., & Simmerling, C. (2006). Comparison of multiple Amber force fields and development of improved protein backbone parameters. Proteins: Structure, Function, and Bioinformatics , 65(3), 712–725. doi:10.1002/prot.21123
  • Jorgensen, W. L. (1981). Quantum and statistical mechanical studies of liquids. 10. Transferable intermolecular potential functions for water, alcohols, and ethers. Application to liquid water. Journal of the American Chemical Society, 103(2), 335–340. doi:10.1021/ja00392a016
  • Kim, K. R., Park, S. H., Kim, H. S., Rhee, K. H., Kim, B.-G., Kim, D. G., … Han, B. W. (2013). Crystal structure of human cytosolic aspartyl-tRNA synthetase, a component of multi-tRNA synthetase complex. Proteins: Structure, Function, and Bioinformatics , 81(10), 1840–1846. doi:10.1002/prot.24306
  • Krauss, G., Riesner, D., & Maass, G. (1976). Mechanism of discrimination between cognate and non-cognate tRNAs by phenylalanyl-tRNA synthetase from yeast. European journal of Biochemistry, 68(1), 81–93. doi:10.1111/j.1432-1033.1976.tb10766.x
  • Laskowski, R. A. (2001). PDBsum: Summaries and analyses of PDB structures. Nucleic acids Research, 29(1), 221–222. doi:10.1093/nar/29.1.221
  • Laskowski, R. A., Jabłońska, J., Pravda, L., Vařeková, R. S., & Thornton, J. M. (2018). PDBsum: Structural summaries of PDB entries. Protein Science, 27(1), 129–134. doi:10.1002/pro.3289
  • Li, R., Macnamara, L., Leuchter, J., Alexander, R., & Cho, S. (2015). MD simulations of tRNA and aminoacyl-tRNA synthetases: Dynamics, folding, binding, and allostery. International Journal of Molecular Sciences, 16(7), 15872–15902. doi:10.3390/ijms160715872
  • McClain, W. H. (1993). Transfer RNA identity. The Faseb Journal , 7(1), 72–78. doi:10.1096/fasebj.7.1.8422977
  • Miller, B. R., McGee, T. D., Swails, J. M., Homeyer, N., Gohlke, H., & Roitberg, A. E. 3rd,. (2012). MMPBSA.py: An efficient program for end-state free energy calculations. Journal of chemical theory and Computation, 8(9), 3314–3321. doi:10.1021/ct300418h
  • Moulinier, L., Eiler, S., Eriani, G., Gangloff, J., Thierry, J.-C., Gabriel, K., … Moras, D. (2001). The structure of an AspRS-tRNA(Asp) complex reveals a tRNA-dependent control mechanism. The Embo Journal , 20(18), 5290–5301. doi:10.1093/emboj/20.18.5290
  • Nagarajan, R., Chothani, S., Ramakrishnan, C., Sekijima, M., & Gromiha, M.(2015). Structure based approach for understanding organism specific recognition of protein-RNA complexes. Biology Direct, 10(1), 8 doi:10.1186/s13062-015-0039-8.
  • Neuenfeldt, A., Lorber, B., Ennifar, E., Gaudry, A., Sauter, C., Sissler, M., & Florentz, C. (2013). Thermodynamic properties distinguish human mitochondrial aspartyl-tRNA synthetase from bacterial homolog with same 3D architecture. Nucleic acids Research, 41(4), 2698–2708. doi:10.1093/nar/gks1322
  • Onesti, S., Desogus, G., Brevet, A., Chen, J., Plateau, P., Blanquet, S., & Brick, P. (2000). Structural studies of lysyl-tRNA synthetase: Conformational changes induced by substrate binding. Biochemistry, 39(42), 12853–12861. doi:10.1021/bi001487r
  • Pearlman, D. A., Case, D. A., Caldwell, J. W., Ross, W. S., Cheatham, T. E., DeBolt, S., … Kollman, P. (1995). AMBER, a package of computer programs for applying molecular mechanics, normal mode analysis, molecular dynamics and free energy calculations to simulate the structural and energetic properties of molecules. Computer Physics Communications, 91(1–3), 1–41. doi:10.1016/0010-4655(95)00041-D
  • Pouplana, L. R., Buechter, D. D., Davis, M. W., & Schimmel, P. (1993). Idiographic representation of conserved domain of a class II tRNA synthetase of unknown structure. Protein Science, 2(12), 2259–2262. doi:10.1002/pro.5560021225
  • Rees, B., Webster, G., Delarue, M., Boeglin, M., & Moras, D. (2000). Aspartyl tRNA-synthetase from Escherichia coli: Flexibility and adaptability to the substrates. Journal of molecular Biology, 299(5), 1157–1164. doi:10.1006/jmbi.2000.3792
  • Ribas de Pouplana, L., & Schimmel, P. (2001). Two classes of tRNA synthetases suggested by sterically compatible dockings on tRNA acceptor stem. Cell, 104(2), 191–193. doi:10.1016/S0092-8674(01)00204-5
  • Riesner, D., Pingoud, A., Boehme, D., Peters, F., & Maass, G. (1976). Distinct steps in the specific binding of tRNA to aminoacyl-tRNA synthetase. Temperature-jump studies on the serine-specific system from yeast and the tyrosine-specific system from Escherichia coli. European journal of Biochemistry, 68(1), 71–80. doi:10.1111/j.1432-1033.1976.tb10765.x
  • Roe, D. R., & Cheatham, T. E. 3rd. (2013). PTRAJ and CPPTRAJ: Software for processing and analysis of molecular dynamics trajectory data. Journal of chemical theory and Computation, 9(7), 3084–3095. doi:10.1021/ct400341p
  • Ruff, M., Krishnaswamy, S., Boeglin, M., Poterszman, A., Mitschler, A., Podjarny, A., … Moras, D. (1991). Class II aminoacyl transfer RNA synthetases: Crystal structure of yeast aspartyl-tRNA synthetase complexed with tRNA(Asp). Science, 252(5013), 1682–1689. doi:10.1126/science.2047877
  • Ryckaert, J.-P., Ciccotti, G., & Berendsen, H. J. C. (1977). Numerical integration of the cartesian equations of motion of a system with constraints: Molecular dynamics of n-alkanes. Journal of Computational Physics, 23(3), 327–341. doi:10.1016/0021-9991(77)90098-5
  • Sauter, C., Lorber, B., Cavarelli, J., Moras, D., & Giegé, R. (2000). The free yeast aspartyl-tRNA synthetase differs from the tRNA(Asp)-complexed enzyme by structural changes in the catalytic site, hinge region, and anticodon-binding domain. Journal of molecular Biology, 299(5), 1313–1324. doi:10.1006/jmbi.2000.3791
  • Schimmel, P. (1991). Classes of aminoacyl-tRNA synthetases and the establishment of the genetic code. Trends in biochemical Sciences, 16(1), 1–3. doi:10.1016/0968-0004(91)90002-D
  • Schulman, L. H. (1991). Recognition of tRNAs by aminoacyl-tRNA synthetases. Progress in nucleic acid research and molecular Biology, 41, 23–87.
  • Sethi, A., O'Donoghue, P., & Luthey-Schulten, Z. (2005). Evolutionary profiles from the QR factorization of multiple sequence alignments. Proceedings of the National Academy of Sciences of Sciences , 102(11), 4045–4050. doi:10.1073/pnas.0409715102
  • Shao, J., Tanner, S. W., Thompson, N., & Cheatham, T. E. (2007). Clustering molecular dynamics trajectories: 1. Characterizing the performance of different clustering algorithms. Journal of Chemical Theory and Computation, 3(6), 2312–2334. doi:10.1021/ct700119m
  • Thompson, D., Plateau, P., & Simonson, T. (2006). Free-energy simulations and experiments reveal long-range electrostatic interactions and substrate-assisted specificity in an aminoacyl-tRNA synthetase. ChemBioChem , 7(2), 337–344. doi:10.1002/cbic.200500364
  • Thompson, D., & Simonson, T. (2006). Molecular dynamics simulations show that bound Mg2+ contributes to amino acid and aminoacyl adenylate binding specificity in aspartyl-tRNA synthetase through long range electrostatic interactions. Journal of Biological Chemistry , 281(33), 23792–23803. doi:10.1074/jbc.M602870200
  • Ul-Haq, Z., Khan, W., Zarina, S., Sattar, R., & Moin, S. T. (2010). Template-based structure prediction and molecular dynamics simulation study of two mammalian Aspartyl-tRNA synthetases. Journal of molecular graphics and Modelling , 28(5), 401–412. doi:10.1016/j.jmgm.2009.09.006
  • Woese, C. R., Olsen, G. J., Ibba, M., & Soll, D. (2000). Aminoacyl-tRNA synthetases, the genetic code, and the evolutionary process. Microbiology and molecular biology reviews: MMBR, 64(1), 202–236. doi:10.1128/MMBR.64.1.202-236.2000

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.