246
Views
14
CrossRef citations to date
0
Altmetric
Research Articles

Are zinc oxide nanoparticles safe? A structural study on human serum albumin using in vitro and in silico methods

, , &
Pages 330-335 | Received 08 Oct 2019, Accepted 23 Dec 2019, Published online: 29 Jan 2020

References

  • Abraham, M. J., Murtola, T., Schulz, R., Páll, S., Smith, J. C., Hess, B., & Lindahl, E. (2015). GROMACS: High performance molecular simulations through multi-level parallelism from laptops to supercomputers. SoftwareX, 1-2, 19–25. doi:10.1016/j.softx.2015.06.001
  • Aghili, Z., Taheri, S., Zeinabad, H. A., Pishkar, L., Saboury, A. A., Rahimi, A., & Falahati, M. (2016). Investigating the interaction of Fe nanoparticles with lysozyme by biophysical and molecular docking studies. PLoS One, 11(10), e0164878. doi:10.1371/journal.pone.0164878
  • Ang, J. C., Henderson, M. J., Campbell, R. A., Lin, J.-M., Yaron, P. N., Nelson, A., … White, J. W. (2014). Human serum albumin binding to silica nanoparticles–effect of protein fatty acid ligand. Phys Chem Chem Phys, 16(21), 10157–10168. doi:10.1039/C4CP00293H
  • Artali, R., Bombieri, G., Calabi, L., & Del Pra, A. (2005). A molecular dynamics study of human serum albumin binding sites. Il Farmaco, 60(6-7), 485–495. doi:10.1016/j.farmac.2005.04.010
  • Baral, A., Satish, L., Das, D. P., Sahoo, H., & Ghosh, M. K. (2017). Construing the interactions between MnO2 nanoparticle and bovine serum albumin: Insight into the structure and stability of a protein–nanoparticle complex. New Journal of Chemistry, 41(16), 8130–8139. doi:10.1039/C7NJ01227F
  • Bhattacharya, A. A., Grune, T., & Curry, S. (2000). Crystallographic analysis reveals common modes of binding of medium and long-chain fatty acids to human serum albumin. Journal of Molecular Biology, 303(5), 721–732. doi:10.1006/jmbi.2000.4158
  • Bhunia, A. K., Kamilya, T., & Saha, S. (2016). Temperature dependent and kinetic study of the adsorption of bovine serum albumin to ZnO nanoparticle surfaces. ChemistrySelect, 1(11), 2872–2882. doi:10.1002/slct.201600446
  • Castellanos, M. M., & Colina, C. M. (2013). Molecular dynamics simulations of human serum albumin and role of disulfide bonds. The Journal of Physical Chemistry B, 117(40), 11895–11905. doi:10.1021/jp402994r
  • Chakraborti, S., Joshi, P., Chakravarty, D., Shanker, V., Ansari, Z. A., Singh, S. P., & Chakrabarti, P. (2012). Interaction of polyethyleneimine-functionalized ZnO nanoparticles with bovine serum albumin. Langmuir, 28(30), 11142–11152. doi:10.1021/la3007603
  • Chatterjee, T., Pal, A., Dey, S., Chatterjee, B. K., & Chakrabarti, P. (2012). Interaction of virstatin with human serum albumin: Spectroscopic analysis and molecular modeling. PLoS One, 7(5), e37468. doi:10.1371/journal.pone.0037468
  • Chatterjee, T., Chakraborti, S., Joshi, P., Singh, S. P., Gupta, V., & Chakrabarti, P. (2010). The effect of zinc oxide nanoparticles on the structure of the periplasmic domain of the Vibrio cholerae ToxR protein. The FEBS Journal, 277(20), 4184–4194. doi:10.1111/j.1742-4658.2010.07807.x
  • Choi, S. J., & Choy, J. H. (2014). Biokinetics of zinc oxide nanoparticles: Toxicokinetics, biological fates, and protein interaction. International Journal of Nanomedicine, 9 (Suppl 2), 261–269. doi:10.2147/ijn.s57920
  • Dadras, A., Riazi, G. H., Afrasiabi, A., Naghshineh, A., Ghalandari, B., & Mokhtari, F. (2013). In vitro study on the alterations of brain tubulin structure and assembly affected by magnetite nanoparticles. JBIC Journal of Biological Inorganic Chemistry, 18(3), 357–369. doi:10.1007/s00775-013-0980-x
  • Essmann, U., Perera, L., Berkowitz, M. L., Darden, T., Lee, H., & Pedersen, L. G. (1995). A smooth particle mesh Ewald method. The Journal of chemical Physics, 103(19), 8577–8593. doi:10.1063/1.470117
  • Fan, H., Ji, N., Zhao, M., Xiong, L., & Sun, Q. (2015). Interaction of bovine serum albumin with starch nanoparticles prepared by TEMPO-mediated oxidation. International journal of biological Macromolecules, 78, 333–338. doi:10.1016/j.ijbiomac.2015.04.028
  • Hess, B., Bekker, H., Berendsen, H. J., & Fraaije, J. G. (1997). LINCS: A linear constraint solver for molecular simulations. Journal of computational Chemistry, 18(12), 1463–1472. doi:10.1002/(SICI)1096-987X(199709)18:12<1463::AID-JCC4>3.3.CO;2-L
  • Hornak, V., Abel, R., Okur, A., Strockbine, B., Roitberg, A., & Simmerling, C. (2006). Comparison of multiple Amber force fields and development of improved protein backbone parameters. Proteins: Structure, Function, and Bioinformatics, 65(3), 712–725. doi:10.1002/prot.21123
  • Hosseinzadeh, G., Maghari, A., Farnia, S. M. F., & Moosavi-Movahedi, A. A. (2017). Interaction mechanism of insulin with ZnO nanoparticles by replica exchange molecular dynamics simulation. Journal of Biomolecular Structure and Dynamics, 36(14), 3623–3635. doi:10.1080/07391102.2017.1396254
  • Huang, H., Liu, X., Han, R., & Wang, G. (2017). Study on the interaction of retinoic acids to human serum albumin by fluorescence and circular dichroism spectroscopy. Journal of Environmental Analytical Chemistry, 04(02), 2380–2391. 1000192. doi:10.4172/2380-2391.1000192
  • Humphrey, W., Dalke, A., & Schulten, K. (1996). VMD: Visual molecular dynamics. Journal of Molecular Graphics, 14(1), 33–38. doi:10.1016/0263-7855(96)00018-5
  • Jorgensen, W. L., Chandrasekhar, J., Madura, J. D., Impey, R. W., & Klein, M. L. (1983). Comparison of simple potential functions for simulating liquid water. The Journal of chemical Physics, 79(2), 926–935. doi:10.1063/1.445869
  • Khan, M. J., & Maskat, M. Y. (2014). Interaction of titanium dioxide nanoparticles with human serum albumin: A spectroscopic approach. International Journal of Pharmacy and Pharmaceutical Sciences, 6(3), 43–46.
  • Khanna, P., Ong, C., Bay, B. H., & Baeg, G. H. (2015). Nanotoxicity: An Interplay of Oxidative Stress, Inflammation and Cell Death. Nanomaterials (Basel), 5(3), 1163–1180. doi:10.3390/nano5031163
  • Miyamoto, S., & Kollman, P. A. (1992). Settle: An analytical version of the SHAKE and RATTLE algorithm for rigid water models. Journal of computational Chemistry, 13(8), 952–962. doi:10.1002/jcc.540130805
  • Nawrocki, G., & Cieplak, M. (2013). Amino acids and proteins at ZnO-water interfaces in molecular dynamics simulations. Physical Chemistry Chemical Physics, 15(32), 13628–13636. doi:10.1039/c3cp52198b
  • Nerusu, A., Reddy, P. S., Ramachary, D. B., & Subramanyam, R. (2017). Unraveling the stability of plasma proteins upon interaction of synthesized androstenedione and its derivatives-a biophysical and computational approach. ACS Omega, 2(10), 6514–6524. doi:10.1021/acsomega.7b00577
  • Pettersen, E. F., Goddard, T. D., Huang, C. C., Couch, G. S., Greenblatt, D. M., Meng, E. C., & Ferrin, T. E. (2004). UCSF Chimera–A visualization system for exploratory research and analysis. Journal of Computational Chemistry, 25(13), 1605–1612. doi:10.1002/jcc.20084
  • Raoufinia, R., Mota, A., Keyhanvar, N., Safari, F., Shamekhi, S., & Abdolalizadeh, J. (2016). Overview of albumin and its purification methods. Advanced Pharmaceutical Bulletin, 6(4), 495–507. doi:10.15171/apb.2016.063
  • Saptarshi, S. R., Duschl, A., & Lopata, A. L. (2013). Interaction of nanoparticles with proteins: Relation to bio-reactivity of the nanoparticle. Journal of Nanobiotechnology, 11 (1), 26. doi:10.1186/1477-3155-11-26
  • Sen, T., Mandal, S., Haldar, S., Chattopadhyay, K., & Patra, A. (2011). Interaction of gold nanoparticle with human serum albumin (HSA) protein using surface energy transfer. The Journal of Physical Chemistry C, 115(49), 24037–24044. doi:10.1021/jp207374g
  • Vandebriel, R. J., & De Jong, W. H. (2012). A review of mammalian toxicity of ZnO nanoparticles. Nanotechnology, Science and Applications, 5, 61–71. doi:10.2147/nsa.s23932
  • Wang, Y., Ma, Q., Jia, H., & Wang, Z. (2016). One-step solution synthesis and formation mechanism of flower-like ZnO and its structural and optical characterization. Ceramics International, 42(9), 10751–10757. doi:10.1016/j.ceramint.2016.03.200
  • Zhang, Y.-Z., Zhou, B., Liu, Y.-X., Zhou, C.-X., Ding, X.-L., & Liu, Y. (2008). Fluorescence study on the interaction of bovine serum albumin with p-aminoazobenzene. Journal of Fluorescence, 18(1), 109–118. doi:10.1007/s10895-007-0247-4

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.