330
Views
9
CrossRef citations to date
0
Altmetric
Research Articles

Identifying the key residues instrumental in imparting stability to amyloid beta protofibrils – a comparative study using MD simulations of 17–42 residues

& ORCID Icon
Pages 431-456 | Received 11 Nov 2019, Accepted 26 Dec 2019, Published online: 13 Jan 2020

References

  • Aravinda, S., Shamala, N., Das, C., Sriranjini, A., Karle, I. L., & Balaram, P. (2003). Aromatic-aromatic interactions in crystal structures of helical peptide scaffolds containing projecting phenylalanine residues. Journal of the American Chemical Society, 125(18), 5308–5315. doi:10.1021/ja0341283
  • Berendsen, H. J. C., Postma, J. P. M., Van Gunsteren, W. F., DiNola, A., & Haak, J. R. (1984). Molecular dynamics with coupling to an external bath. The Journal of Chemical Physics, 81(8), 3684–3690. doi:10.1063/1.448118
  • Berendsen, H. J. C., Postma, J. P. M., van Gunsteren, W. F., & Hermans, J. (1981). Interaction models for water in relation to protein hydration. In: B. Pullman. (Ed.), The Jerusalem Symposia on Quantum Chemistry and Biochemistry, (vol. 14, pp. 331–342). Dordrecht: Springer. doi:10.1007/978-94-015-7658-1_21
  • Butterfield, D. A., Castegna, A., Lauderback, C. M., & Drake, J. (2002). Evidence that amyloid beta-peptide-induced lipid peroxidation and its sequelae in Alzheimer’s disease brain contribute to neuronal death. Neurobiology of Aging, 23(5), 655–664. doi:10.1016/S0197-4580(01)00340-2
  • Carballo-Pacheco, M., Ismail, A. E., & Strodel, B. (2018). On the applicability of force fields to study the aggregation of amyloidogenic peptides using molecular dynamics simulations. Journal of Chemical Theory and Computation, 14(11), 6063–6075. doi:10.1021/acs.jctc.8b00579
  • Castello, F., Paredes, J. M., Ruedas-Rama, M. J., Martin, M., Roldan, M., Casares, S., & Orte, A. (2017). Two-step amyloid aggregation: Sequential lag phase intermediates. Scientific Reports, 7 (1), 40065–40075. doi:10.1038/srep40065
  • Chakrabartty, A., Doig, A. J., & Baldwin, R. L. (1993). Helix capping propensities in peptides parallel those in proteins. Proceedings of the National Academy of Sciences, 90(23), 11332–11336. doi:10.1073/pnas.90.23.11332
  • Chen, W. T., Liao, Y. H., Yu, H. M., Cheng, I. H., & Chen, Y. R. (2011). Distinct effects of Zn2+, Cu2+, Fe3+, and Al3+ on amyloid-β stability, oligomerization, and aggregation: Amyloid-β destabilization promotes annular protofibril formation. Journal of Biological Chemistry, 286(11), 9646–9656. doi:10.1074/jbc.M110.177246
  • Cheret, C., Willem, M., Fricker, F. R., Wende, H., Wulf-Goldenberg, A., Tahirovic, S., … Birchmeier, C. (2013). Bace1 and Neuregulin-1 cooperate to control formation and maintenance of muscle spindles. The EMBO Journal, 32(14), 2015–2028. doi:10.1038/emboj.2013.146
  • Dahlgren, K. N., Manelli, A. M., Stine, W. B., Baker, L. K., Krafft, G. A., & LaDu, M. J. (2002). Oligomeric and fibrillar species of amyloid-beta peptides differentially affect neuronal viability. Journal of Biological Chemistry, 277(35), 32046–32053. doi:10.1074/jbc.M201750200
  • Darden, T., York, D., & Pedersen, L. (1993). Particle mesh Ewald: An Nlog(N) method for Ewald sums in large systems. The Journal of Chemical Physics, 98(12), 10089–10092. doi:10.1063/1.464397
  • Das, U., Hariprasad, G., Ethayathulla, A. S., Manral, P., Das, T. K., Pasha, S., … Srinivasan, A. (2007). Inhibition of protein aggregation: Supramolecular assemblies of arginine hold the key. PloS One, 2(11), e1176. doi:10.1371/journal.pone.0001176
  • DeLano, W. L. (2002). The PyMOL molecular graphics system. San Carlos: Delano Scientific.
  • Duong, V. T., Chen, Z., Thapa, M. T., & Luo, R. (2018). Computational studies of intrinsically disordered proteins. The Journal of Physical Chemistry B, 122(46), 10455–10469. doi:10.1021/acs.jpcb.8b09029
  • Essmann, U., Perera, L., Berkowitz, M. L., Darden, T., Lee, H., & Pedersen, L. G. (1995). A smooth particle mesh Ewald method. The Journal of Chemical Physics, 103(19), 8577–8593. doi:10.1063/1.470117
  • Finkbeiner, S. (2011). Huntington’s disease. Cold Spring Harbor Perspectives in Biology, 3(6), a007476–a007476. doi:10.1101/cshperspect.a007476
  • Fu, Z., Aucoin, D., Ahmed, M., Ziliox, M., Van Nostrand, W. E., & Smith, S. O. (2014). Capping of aβ42 oligomers by small molecule inhibitors. Biochemistry, 53(50), 7893–7903. doi:10.1021/bi500910b
  • Fukuma, T., Mostaert, A. S., & Jarvis, S. P. (2006). Explanation for the mechanical strength of amyloid fibrils. Tribology Letters, 22(3), 233–237. doi:10.1007/s11249-006-9086-8
  • Galimberti, D., & Scarpini, E. (2010). Treatment of Alzheimer’s disease: Symptomatic and disease-modifying approaches. Current Aging Science, 3(1), 46–56. doi:10.2174/1874609811003010046
  • Galzitskaya, O. (2019). New mechanism of amyloid fibril formation. Current Protein & Peptide Science, 20(6), 630–640. doi:10.2174/1389203720666190125160937
  • Ghosh, T., Garde, S., & García, A. E. (2003). Role of backbone hydration and salt-bridge formation in stability of α-Helix in solution. Biophysical Journal, 85(5), 3187–3193. doi:10.1016/S0006-3495(03)74736-5
  • Ghosh, A. K., Gemma, S., & Tang, J. (2008). β-secretase as a therapeutic target for Alzheimer’s disease. Neurotherapeutics, 5(3), 399–408. doi:10.1016/j.nurt.2008.05.007
  • Godyń, J., Jończyk, J., Panek, D., & Malawska, B. (2016). Therapeutic strategies for Alzheimer’s disease in clinical trials. Pharmacological Reports, 68(1), 127–138. February 1). Vol. doi:10.1016/j.pharep.2015.07.006
  • Gregori, M., Cassina, V., Brogioli, D., Salerno, D., De Kimpe, L., Scheper, W., … Mantegazza, F. (2010). Stability of Aβ (1-42) peptide fibrils as consequence of environmental modifications. European Biophysics Journal, 39(12), 1613–1623. doi:10.1007/s00249-010-0619-6
  • Gremer, L., Schölzel, D., Schenk, C., Reinartz, E., Labahn, J., Ravelli, R. B. G., … Schröder, G. F. (2017). Fibril structure of amyloid-β(1–42) by cryo–electron microscopy. Science, 358(6359), 116–119. doi:10.1126/science.aao2825
  • Haass, C., & Selkoe, D. J. (2007). Soluble protein oligomers in neurodegeneration: Lessons from the Alzheimer’s amyloid beta-peptide. Nature Reviews Molecular Cell Biology, 8(2), 101–112. doi:10.1038/nrm2101
  • Hardy, J., & Selkoe, D. J. (2002). The amyloid hypothesis of Alzheimer’s disease: Progress and problems on the road to therapeutics. Science, 297(5580), 353–356. doi:10.1126/science.1072994
  • Harper, J. D., & Lansbury, P. T. (1997). Models of amyloid seeding in Alzheimer’s disease and scrapie: Mechanistic truths and physiological consequences of the time-dependent solubility of amyloid proteins. Annual Review of Biochemistry, 66 (1), 385–407. doi:10.1146/annurev.biochem.66.1.385
  • Hasegawa, K., Yamaguchi, I., Omata, S., Gejyo, F., & Naiki, H. (1999). Interaction between Aβ(1 − 42) and Aβ(1 − 40) in Alzheimer’s β-amyloid fibril formation in vitro. Biochemistry, 38(47), 15514–15521.
  • Hess, B. (2008). P-LINCS: A parallel linear constraint solver for molecular simulation. Journal of Chemical Theory and Computation, 4(1), 116–122. doi:10.1021/ct700200b
  • Hippius, H., & Neundörfer, G. (2003). The discovery of Alzheimer's disease. Dialogues in Clinical Neuroscience, 5(1), 101–108.
  • Hoover, W. G. (1985). Canonical dynamics: Equilibrium phase-space distributions. Physical Review A, 31(3), 1695–1697. doi:10.1103/PhysRevA.31.1695
  • Howes, M.-J. R., & Houghton, P. J. (2003). Plants used in Chinese and Indian traditional medicine for improvement of memory and cognitive function. Pharmacology Biochemistry and Behavior, 75(3), 513–527. AND (03) AND 00128-X doi:10.1016/S0091-3057
  • Hull, R. L., Westermark, G. T., Westermark, P., & Kahn, S. E. (2004). Islet amyloid: A critical entity in the pathogenesis of Type 2 diabetes. The Journal of Clinical Endocrinology and Metabolism, 89(8), 3629–3643. doi:10.1210/jc.2004-0405
  • Iqbal, K., & Grundke-Iqbal, I. (2010). Alzheimer’s disease, a multifactorial disorder seeking multitherapies. Alzheimer’s and Dementia, 6(5), 420–424. doi:10.1016/j.jalz.2010.04.006
  • Jarrett, J. T., & Lansbury, P. T. (1992). Amyloid fibril formation requires a chemically discriminating nucleation event: Studies of an amyloidogenic sequence from the bacterial protein OsmB. Biochemistry, 31(49), 12345–12352.
  • Jin, Y., Sun, Y., Lei, J., & Wei, G. (2018). Dihydrochalcone molecules destabilize Alzheimer’s amyloid-β protofibrils through binding to the protofibril cavity. Physical Chemistry Chemical Physics, 20(25), 17208–17217. doi:10.1039/c8cp01631c [Crossref].
  • Joodaki, F., Martin, L. M., & Greenfield, M. L. (2019). Planarity and out-of-plane vibrational modes of tryptophan and tyrosine in biomolecular modeling. Physical Chemistry Chemical Physics, 21(43), 23943–23965.
  • Kim, J., Onstead, L., Randle, S., Price, R., Smithson, L., Zwizinski, C., … McGowan, E. (2007). Aβ40 inhibits amyloid deposition in vivo. Journal of Neuroscience, 27(3), 627–633. doi:10.1523/JNEUROSCI.4849-06.2007
  • Kroth, H., Ansaloni, A., Varisco, Y., Jan, A., Sreenivasachary, N., Rezaei-Ghaleh, N., … Muhs, A. (2012). Discovery and structure activity relationship of small molecule inhibitors of toxic β-amyloid-42 fibril formation. Journal of Biological Chemistry, 287(41), 34786–34800.
  • Kuhn, P.-H., Koroniak, K., Hogl, S., Colombo, A., Zeitschel, U., Willem, M., … Lichtenthaler, S. F. (2012). Secretome protein enrichment identifies physiological BACE1 protease substrates in neurons. The EMBO Journal, 31(14), 3157–3168.
  • Kumar, S., & Nussinov, R. (2002). Close-range electrostatic interactions in proteins. ChemBioChem, 3(7), 604–617. doi:10.1002/1439-7633(20020703)3:7 < 604::AID-CBIC604 > 3.0.CO;2-X
  • Kumar-Singh, S., Theuns, J., Van Broeck, B., Pirici, D., Vennekens, K., Corsmit, E., … Van Broeckhoven, C. (2006). Mean age-of-onset of familial Alzheimer disease caused by presenilin mutations correlates with both increased Aβ42 and decreased Aβ40. Human Mutation, 27(7), 686–695.
  • Kupfer, L., Hinrichs, W., & Groschup, M. H. (2009). Prion protein misfolding. Current Molecular Medicine, 9(7), 826–835. doi:10.2174/156652409789105543
  • LaFerla, F. M., Green, K. N., & Oddo, S. (2007). Intracellular amyloid-β in Alzheimer’s disease. Nature Reviews Neuroscience, 8(7), 499–509.
  • Lemkul, J. A., & Bevan, D. R. (2010a). Assessing the stability of Alzheimer’s amyloid protofibrils using molecular dynamics. The Journal of Physical Chemistry B, 114(4), 1652–1660.
  • Lemkul, J. A., & Bevan, D. R. (2010b). Destabilizing Alzheimer’s Aβ42 protofibrils with morin: Mechanistic insights from molecular dynamics simulations. Biochemistry, 49(18), 3935–3946.
  • Lemkul, J. A., & Bevan, D. R. (2012). Morin inhibits the early stages of amyloid β-peptide aggregation by altering tertiary and quaternary interactions to produce “off-pathway” structures. Biochemistry, 51(30), 5990–6009.
  • Liu, F.-F., Dong, X.-Y., He, L., Middelberg, A. P. J., & Sun, Y. (2011). Molecular insight into conformational transition of amyloid β-peptide 42 inhibited by (-)-epigallocatechin-3-gallate probed by molecular simulations. The Journal of Physical Chemistry B, 115(41), 11879–11887.
  • Liu, H., Song, D., Lu, H., Luo, R., & Chen, H.-F. (2018). Intrinsically disordered protein-specific force field CHARMM36IDPSFF. Chemical Biology & Drug Design, 92(4), 1722–1735. doi:10.1111/cbdd.13342
  • Luhrs, T., Ritter, C., Adrian, M., Riek-Loher, D., Bohrmann, B., Dobeli, H., … Riek, R. (2005). 3D structure of Alzheimer’s amyloid-β(1-42) fibrils. Proceedings of the National Academy of Sciences, 102(48), 17342–17347.
  • McGaughey, G. B., Gagné, M., & Rappé, A. K. (1998). π-Stacking interactions. Alive and well in proteins. Journal of Biological Chemistry, 273(25), 15458–15463.
  • McKoy, A. F., Chen, J., Schupbach, T., & Hecht, M. H. (2012). A novel inhibitor of amyloid β (Aβ) peptide aggregation: From high throughput. Screening to efficacy in an animal model of Alzheimer disease. Journal of Biological Chemistry, 287(46), 38992–39000.
  • Murakami, K., Murata, N., Noda, Y., Tahara, S., Kaneko, T., Kinoshita, N., … Shimizu, T. (2011). SOD1 (copper/zinc superoxide dismutase) deficiency drives amyloid β protein oligomerization and memory loss in mouse model of Alzheimer disease. Journal of Biological Chemistry, 286(52), 44557–44568.
  • Murphy, M. P., Hickman, L. J., Eckman, C. B., Uljon, S. N., Wang, H., & Golde, T. E. (1999). γ-Secretase, evidence for multiple proteolytic activities and influence of membrane positioning of substrate on generation of amyloid β peptides of varying length. Journal of Biological Chemistry, 274(17), 11914–11923.
  • Murphy, M. P., & LeVine, H. 3rd. (2010). Alzheimer’s disease and the amyloid-beta peptide. Journal of Alzheimer's Disease, 19(1), 311–323.
  • Ngo, S. T., & Li, M. S. (2012). Curcumin binds to Aβ1-40 peptides and fibrils stronger than ibuprofen and naproxen. The Journal of Physical Chemistry B, 116(34), 10165–10175.
  • Nosé, S. (1984). A unified formulation of the constant temperature molecular dynamics methods. The Journal of Chemical Physics, 81(1), 511–519.
  • Nosé, S., & Klein, M. L. (1983). Constant pressure molecular dynamics for molecular systems. Molecular Physics, 50(5), 1055–1076.
  • Ono, K., Condron, M. M., Ho, L., Wang, J., Zhao, W., Pasinetti, G. M., & Teplow, D. B. (2008). Effects of grape seed-derived polyphenols on amyloid β-protein self-assembly and cytotoxicity. Journal of Biological Chemistry, 283(47), 32176–32187.
  • Ono, K., Hasegawa, K., Naiki, H., & Yamada, M. (2004). Curcumin has potent anti-amyloidogenic effects for Alzheimer’s β-amyloid fibrils in vitro. Journal of Neuroscience Research, 75(6), 742–750.
  • Ono, K., Li, L., Takamura, Y., Yoshiike, Y., Zhu, L., Han, F., … Yamada, M. (2012). Phenolic compounds prevent amyloid β-protein oligomerization and synaptic dysfunction by site-specific binding. Journal of Biological Chemistry, 287(18), 14631–14643.
  • Ono, K., Yoshiike, Y., Takashima, A., Hasegawa, K., Naiki, H., & Yamada, M. (2003). Potent anti-amyloidogenic and fibril-destabilizing effects of polyphenols in vitro: Implications for the prevention and therapeutics of Alzheimer’s disease. Journal of Neurochemistry, 87(1), 172–181.
  • Oostenbrink, C., Villa, A., Mark, A. E., & Van Gunsteren, W. F. (2004). A biomolecular force field based on the free enthalpy of hydration and solvation: The GROMOS force-field parameter sets 53A5 and 53A6. Journal of Computational Chemistry, 25(13), 1656–1676.
  • Parrinello, M., & Rahman, A. (1981). Polymorphic transitions in single crystals: A new molecular dynamics method. Journal of Applied Physics, 52(12), 7182–7190.
  • Pauwels, K., Williams, T. L., Morris, K. L., Jonckheere, W., Vandersteen, A., Kelly, G., … Broersen, K. (2012). Structural basis for increased toxicity of pathological Aβ42:Aβ40 ratios in Alzheimer disease. Journal of Biological Chemistry, 287(8), 5650–5660.
  • Petkova, A. T., Ishii, Y., Balbach, J. J., Antzutkin, O. N., Leapman, R. D., Delaglio, F., & Tycko, R. (2002). A structural model for Alzheimer’s β-amyloid fibrils based on experimental constraints from solid state NMR. Proceedings of the National Academy of Sciences of Sciences, 99(26), 16742–16747.
  • Pronk, S., Páll, S., Schulz, R., Larsson, P., Bjelkmar, P., Apostolov, R., … Lindahl, E. (2013). GROMACS 4.5: A high-throughput and highly parallel open source molecular simulation toolkit. Bioinformatics, 29(7), 845–854.
  • Reinke, A. A., & Gestwicki, J. E. (2007). Structure-activity relationships of amyloid beta-aggregation inhibitors based on curcumin: Influence of linker length and flexibility. Chemical Biology & Drug Design, 70(3), 206–215. doi:10.1111/j.1747-0285.2007.00557.x
  • Ringman, J. M., Frautschy, S. A., Cole, G. M., Masterman, D. L., & Cummings, J. L. (2005). A potential role of the curry spice curcumin in Alzheimer’s disease. Current Alzheimer Research, 2(2), 131–136. doi:10.2174/1567205053585882 [Crossref]
  • Roberson, E. D., & Mucke, L. (2006). 100 years and counting: Prospects for defeating Alzheimer’s disease. Science, 314(5800), 781–784.
  • Robustelli, P., Piana, S., & Shaw, D. E. (2018). Developing a molecular dynamics force field for both folded and disordered protein states. Proceedings of the National Academy of Sciences, 115(21), E4758–E4766.
  • Sato, M., Murakami, K., Uno, M., Nakagawa, Y., Katayama, S., Akagi, K.-I., … Irie, K. (2013). Site-specific inhibitory mechanism for amyloid β42 aggregation by catechol-type flavonoids targeting the Lys residues. Journal of Biological Chemistry, 288(32), 23212–23224.
  • Saura, C. A., Choi, S.-Y., Beglopoulos, V., Malkani, S., Zhang, D., Rao, B. S. S., … Shen, J. (2004). Loss of presenilin function causes impairments of memory and synaptic plasticity followed by age-dependent neurodegeneration. Neuron, 42(1), 23–36.
  • Shuaib, S., Narang, S. S., Goyal, D., & Goyal, B. (2019). Computational design and evaluation of β-sheet breaker peptides for destabilizing Alzheimer's amyloid-β42 protofibrils. Journal of Cellular Biochemistry, 120(10), 17935–17950. doi:10.1002/jcb.29061
  • Singh, A. K., Bissoyi, A., Kashyap, M. P., Patra, P. K., & Rizvi, S. I. (2017). Autophagy activation alleviates amyloid-β-induced oxidative stress, apoptosis and neurotoxicity in human neuroblastoma SH-SY5Y cells. Neurotoxicity Research, 32(3), 351–361.
  • Soto, C., Brañes, M. C., Alvarez, J., & Inestrosa, N. C. (2002). Structural determinants of the Alzheimer’s amyloid β-peptide. Journal of Neurochemistry, 63(4), 1191–1198.
  • Stefanis, L. (2012). α-Synuclein in Parkinson’s disease. Cold Spring Harbor Perspectives in Medicine, 2(2), a009399–a009399.
  • Tayeb, H. O., Yang, H. D., Price, B. H., & Tarazi, F. I. (2012). Pharmacotherapies for Alzheimer's disease: Beyond cholinesterase inhibitors. Pharmacology & Therapeutics, 134(1), 8–25. doi:10.1016/j.pharmthera.2011.12.002
  • Thapa, A., Woo, E.-R., Chi, E. Y., Sharoar, M. G., Jin, H.-G., Shin, S. Y., & Park, I.-S. (2011). Biflavonoids are superior to monoflavonoids in inhibiting amyloid-β toxicity and fibrillogenesis via accumulation of nontoxic oligomer-like structures. Biochemistry, 50(13), 2445–2455.
  • Thinakaran, G., & Koo, E. H. (2008). Amyloid precursor protein trafficking, processing, and function. Journal of Biological Chemistry, 283(44), 29615–29619.
  • Tischer, E., & Cordell, B. (1996). β-Amyloid precursor protein: Location of transmembrane domain and specificity of ϒ-secretase cleavage. Journal of Biological Chemistry, 271(36), 21914–21919.
  • Varadarajan, S., Yatin, S., Aksenova, M., & Butterfield, D. A. (2000). Review: Alzheimer’s amyloid beta-peptide-associated free radical oxidative stress and neurotoxicity. Journal of Structural Biology, 130(2-3), 184–208.
  • Veloso, A. J., & Kerman, K. (2012). Modulation of fibril formation by a beta-sheet breaker peptide ligand: An electrochemical approach. Bioelectrochemistry, 84, 49–52.
  • Viet, M. H., Ngo, S. T., Lam, N. S., & Li, M. S. (2011). Inhibition of aggregation of amyloid peptides by beta-sheet breaker peptides and their binding affinity. The Journal of Physical Chemistry B, 115(22), 7433–7446.
  • Walsh, D. M., Klyubin, I., Fadeeva, J. V., Cullen, W. K., Anwyl, R., Wolfe, M. S., … Selkoe, D. J. (2002). Naturally secreted oligomers of amyloid beta protein potently inhibit hippocampal long-term potentiation in vivo. Nature, 416(6880), 535–539.
  • Walsh, D. M., & Selkoe, D. J. (2007). Aβ oligomers -A decade of discovery. Journal of Neurochemistry, 101(5), 1172–1184.
  • Weber, O., C., & Uversky, V. N. (2017). How accurate are your simulations? Effects of confined aqueous volume and AMBER FF99SB and CHARMM22/CMAP force field parameters on structural ensembles of intrinsically disordered proteins: Amyloid-β42 in water. Intrinsically Disordered Proteins, 5(1), e1377813.
  • Willem, M., Garratt, A. N., Novak, B., Citron, M., Kaufmann, S., Rittger, A., … Haass, C. (2006). Control of peripheral nerve myelination by the -secretase BACE1. Science, 314(5799), 664–666.
  • Williams, P., Sorribas, A., & Howes, M.-J. R. (2011). Natural products as a source of Alzheimer’s drug leads. Natural Product Reports, 28(1), 48–77.
  • Wise-Scira, O., Xu, L., Kitahara, T., Perry, G., & Coskuner, O. (2011). Amyloid-β peptide structure in aqueous solution varies with fragment size. Journal of Chemical Physics, 135(20), 205101–205113. doi:10.1063/1.3662490
  • Wolfe, M. S., Citron, M., Diehl, T. S., Xia, W., Donkor, I. O., & Selkoe, D. J. (1998). A substrate-based difluoro ketone selectively inhibits Alzheimer’s gamma-secretase activity. Journal of Medicinal Chemistry, 41(1), 6–9.
  • Yan, Y., & Wang, C. (2006). Aβ42 is more rigid than Aβ40 at the C terminus: Implications for Aβ aggregation and toxicity. Journal of Molecular Biology, 364(5), 853–862.
  • Zhao, L. N., Chiu, S.-W., Benoit, J., Chew, L. Y., & Mu, Y. (2012). The effect of curcumin on the stability of Aβ dimers. The Journal of Physical Chemistry B, 116(25), 7428–7435.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.