285
Views
9
CrossRef citations to date
0
Altmetric
Research Articles

Non-enzymatic glycation of human serum albumin modulates its binding efficacy towards bioactive flavonoid chrysin: A detailed study using multi-spectroscopic and computational methods

, , , , &
Pages 476-492 | Received 21 Nov 2019, Accepted 26 Dec 2019, Published online: 20 Jan 2020

References

  • Abou-Zied, O. K., & Al-Shihi, O. I. K. (2008). Characterization of subdomain IIA binding site of human serum albumin in its native, unfolded, and refolded states using small molecular probes. Journal of the American Chemical Society, 130(32), 10793–10801. doi:10.1021/ja8031289
  • Abraham, M. J., Murtola, T., Schulz, R., Páll, S., Smith, J. C., Hess, B., & Lindahl, E. (2015). GROMACS: High performance molecular simulations through multi-level parallelism from laptops to supercomputers. SoftwareX, 1–2, 19–25. doi:10.1016/j.softx.2015.06.001
  • Adcock, S. A., & McCammon, J. A. (2006). Molecular dynamics: Survey of methods for simulating the activity of proteins. Chemical Reviews, 106(5), 1589–1615. doi:10.1021/cr040426m
  • Ahmad, B., Parveen, S., & Khan, R. H. (2006). Effect of albumin conformation on the binding of ciprofloxacin to human serum albumin: A novel approach directly assigning binding site. Biomacromolecules, 7(4), 1350–1356. doi:10.1021/bm050996b
  • Ahmad, M. I., Potshangbam, A. M., Javed, M., & Ahmad, M. (2020). Studies on conformational changes induced by binding of pendimethalin with human serum albumin. Chemosphere, 243, 125270. doi:10.1016/j.chemosphere.2019.125270
  • Artali, R., Bombieri, G., Calabi, L., & Del Pra, A. (2005). A molecular dynamics study of human serum albumin binding sites. Il Farmaco, 60(6–7), 485–495. doi:10.1016/j.farmac.2005.04.010
  • Awasthi, S., Murugan, N. A., & Saraswathi, N. T. (2015). Advanced glycation end products modulate structure and drug binding properties of albumin. Molecular Pharmaceutics, 12(9), 3312–3322. doi:10.1021/acs.molpharmaceut.5b00318
  • Banerjee, T., Singh, S. K., & Kishore, N. (2006). Binding of naproxen and amitriptyline to bovine serum albumin: Biophysical aspects. The Journal of Physical Chemistry B, 110(47), 24147–24156. doi:10.1021/jp062734p
  • Barakat, C., & Patra, D. (2013). Combining time-resolved fluorescence with synchronous fluorescence spectroscopy to study bovine serum albumin-curcumin complex during unfolding and refolding processes. Luminescence, 28(2), 149–155. doi:10.1002/bio.2354
  • Berendsen, H. J. C., Postma, J. P. M., van Gunsteren, W. F., & Hermans, J. (1981). Interaction models for water in relation to protein hydration. In B. Pullman (Ed.), Intermolecular forces: Proceedings of the Fourteenth Jerusalem Symposium on Quantum Chemistry and Biochemistry Held in Jerusalem, Israel, April 13–16, 1981 (pp. 331–342). Dordrecht: Springer Netherlands.
  • Bi, S., Ding, L., Tian, Y., Song, D., Zhou, X., Liu, X., & Zhang, H. (2004). Investigation of the interaction between flavonoids and human serum albumin. Journal of Molecular Structure, 703(1–3), 37–45. doi:10.1016/j.molstruc.2004.05.026
  • Biovia, D. S. (2019). BIOVIA Discovery studio visualizer, v19. 1.0. 15350. San Diego: Dassault Systemes.
  • Bohney, J. P., & Feldhoff, R. C. (1992). Effects of nonenzymatic glycosylation and fatty acids on tryptophan binding to human serum albumin. Biochemical Pharmacology, 43(8), 1829–1834. doi:10.1016/0006-2952(92)90717-W
  • Bourdon, E., Loreau, N., & Blache, D. (1999). Glucose and free radicals impair the antioxidant properties of serum albumin. The Faseb Journal, 13(2), 233–244. doi:10.1096/fasebj.13.2.233
  • Carter, D. C., & Ho, J. X. (1994). Structure of serum albumin. Advances in Protein Chemistry. Elsevier, 45, 153–203.
  • Daina, A., & Zoete, V. (2016). A boiled-egg to predict gastrointestinal absorption and brain penetration of small molecules. ChemMedChem, 11(11), 1117–1121. doi:10.1002/cmdc.201600182
  • Das, S., Bora, N., Rohman, M. A., Sharma, R., Jha, A. N., & Singha Roy, A. (2018). Molecular recognition of bio-active flavonoids quercetin and rutin by bovine hemoglobin: An overview of the binding mechanism, thermodynamics and structural aspects through multi-spectroscopic and molecular dynamics simulation studies. Physical Chemistry Chemical Physics, 20(33), 21668–21684. doi:10.1039/C8CP02760A
  • Das, S., Karn, A., Sarmah, R., Rohman, M. A., Koley, S., Ghosh, P., & Roy, A. S. (2018). Characterization of non-covalent binding of 6-hydroxyflavone and 5,7-dihydroxyflavone with bovine hemoglobin: Multi-spectroscopic and molecular docking analyses. Journal of Photochemistry and Photobiology B: Biology, 178, 40–52. doi:10.1016/j.jphotobiol.2017.10.021
  • Das, S., Santra, S., Rohman, M. A., Ray, M., Jana, M., & Singha Roy, A. (2018). An insight into the binding of 6-hydroxyflavone with hen egg white lysozyme: A combined approach of multi-spectroscopic and computational studies. Journal of Biomolecular Structure and Dynamics, 1–16. doi:10.1080/07391102.2018.1535451
  • Das, S., Sarmah, S., & Singha Roy, A. (2020). Monitoring fluorescence emission behaviors of dietary polyphenols in a serum albumin environment. New Journal of Chemistry, 44(2), 299–302. doi:10.1039/C9NJ03938D
  • Doucet, J., Fresel, J., Hue, G., & Moore, N. (1993). Protein binding of digitoxin, valproate and phenytoin in sera from diabetics. European Journal of Clinical Pharmacology, 45(6), 577–579. doi:10.1007/BF00315318
  • Dyer, D. G., Dunn, J. A., Thorpe, S. R., Bailie, K. E., Lyons, T. J., McCance, D. R., & Baynes, J. W. (1993). Accumulation of Maillard reaction products in skin collagen in diabetes and aging. Journal of Clinical Investigation, 91(6), 2463–2469. doi:10.1172/JCI116481
  • Frisch, M., Trucks, G., Schlegel, H., Scuseria, G., Robb, M., Cheeseman, J., Burant, J. (2009). Gaussian 09, GI Revision A. 1-SMP, Wallingford, CT.
  • Gatti, G., Crema, F., Attardo-Parrinello, G., Fratino, P., Aguzzi, F., & Perucca, E. (1987). Serum protein binding of phenytoin and valproic acid in insulin-dependent diabetes mellitus. Therapeutic Drug Monitoring, 9(4), 389–391. doi:10.1097/00007691-198712000-00005
  • Ge, F., Jiang, L., Liu, D., & Chen, C. (2011). Interaction between alizarin and human serum albumin by fluorescence spectroscopy. Analytical Sciences, 27(1), 79–84. doi:10.2116/analsci.27.79
  • Ghuman, J., Zunszain, P. A., Petitpas, I., Bhattacharya, A. A., Otagiri, M., & Curry, S. (2005). Structural basis of the drug-binding specificity of human serum albumin. Journal of Molecular Biology, 353(1), 38–52. doi:10.1016/j.jmb.2005.07.075
  • He, X. M., & Carter, D. C. (1992). Atomic structure and chemistry of human serum albumin. Nature, 358(6383), 209–215. doi:10.1038/358209a0
  • Hebia, C., Bekale, L., Chanphai, P., Agbebavi, J., & Tajmir-Riahi, H. A. (2014). Trypsin inhibitor complexes with human and bovine serum albumins: TEM and spectroscopic analysis. Journal of Photochemistry and Photobiology B: Biology, 130, 254–259. doi:10.1016/j.jphotobiol.2013.11.025
  • Hegab, Z., Gibbons, S., Neyses, L., & Mamas, M. A. (2012). Role of advanced glycation end products in cardiovascular disease. World Journal of Cardiology, 4(4), 90–102. doi:10.4330/wjc.v4.i4.90
  • Hoover, W. G. (1985). Canonical dynamics: Equilibrium phase-space distributions. Physical Review A, 31(3), 1695–1697. doi:10.1103/PhysRevA.31.1695
  • Hubbard, S. J., & Thornton, J. M. (1993). Naccess. Computer Program. London: Department of Biochemistry and Molecular Biology, University College London.
  • Ishtikhar, M., Khan, A., Chang, C. K., Lin, L. T., Wang, S. S., & Khan, R. H. (2016). Effect of guanidine hydrochloride and urea on the interaction of 6-thioguanine with human serum albumin: A spectroscopic and molecular dynamics based study. Journal of Biomolecular Structure and Dynamics, 34(7), 1409–1420. doi:10.1080/07391102.2015.1054433
  • Jana, A. K., Batkulwar, K. B., Kulkarni, M. J., & Sengupta, N. (2016). Glycation induces conformational changes in the amyloid-beta peptide and enhances its aggregation propensity: Molecular insights. Physical Chemistry Chemical Physics, 18(46), 31446–31458. doi:10.1039/C6CP05041G
  • Joseph, K. S., Anguizola, J., & Hage, D. S. (2011). Binding of tolbutamide to glycated human serum albumin. Journal of Pharmaceutical and Biomedical Analysis, 54(2), 426–432. doi:10.1016/j.jpba.2010.09.003
  • Kanakis, C. D., Tarantilis, P. A., Polissiou, M. G., Diamantoglou, S., & Tajmir-Riahi, H. A. (2006). Antioxidant flavonoids bind human serum albumin. Journal of Molecular Structure, 798(1–3), 69–74. doi:10.1016/j.molstruc.2006.03.051
  • Khoo, B. Y., Chua, S. L., & Balaram, P. (2010). Apoptotic effects of chrysin in human cancer cell lines. International Journal of Molecular Sciences, 11(5), 2188–2199. doi:10.3390/ijms11052188
  • Koyama, H., Sugioka, N., Uno, A., Mori, S., & Nakajima, K. (1997). Effects of glycosylation of hypoglycaemic drug binding to serum albumin. Biopharmaceutics & Drug Disposition, 18, 791–801. doi:10.1002/(SICI)1099-081X(199712)18:9<791::AID-BDD66>3.0.CO;2-1
  • Kragh-Hansen, U. (1981). Molecular aspects of ligand binding to serum albumin. Pharmacological Reviews, 33(1), 17–53.
  • Lakowicz, J. R. (2006). Principles of fluorescence spectroscopy. New York: Springer.
  • Li, X., & Wang, S. (2015). Study on the interaction of (+)-catechin with human serum albumin using isothermal titration calorimetry and spectroscopic techniques. New Journal of Chemistry, 39(1), 386–395. doi:10.1039/C4NJ01344A
  • Mabry, T. J., Markham, K. R., & Thomas, M. B. (1970). The systematic identification of flavonoids. Berlin, New York: Springer-Verlag.
  • Maiti, T. K., Ghosh, K. S., & Dasgupta, S. (2006). Interaction of (-)-epigallocatechin-3-gallate with human serum albumin: Fluorescence, Fourier transform infrared, circular dichroism, and docking studies. Proteins: Structure, Function, and Bioinformatics, 64(2), 355–362. doi:10.1002/prot.20995
  • Mereish, K. A., Rosenberg, H., & Cobby, J. (1982). Glucosylated albumin and its influence on salicylate binding. Journal of Pharmaceutical Sciences, 71(2), 235–238. doi:10.1002/jps.2600710223
  • Nakajou, K., Watanabe, H., Kragh-Hansen, U., Maruyama, T., & Otagiri, M. (2003). The effect of glycation on the structure, function and biological fate of human serum albumin as revealed by recombinant mutants. Biochimica et Biophysica Acta (Bba) - General Subjects, 1623(2–3), 88–97.
  • Pace, C. N., Vajdos, F., Fee, L., Grimsley, G., & Gray, T. (1995). How to measure and predict the molar absorption coefficient of a protein. Protein Science, 4(11), 2411–2423. doi:10.1002/pro.5560041120
  • Pal, P., Mahato, M., Kamilya, T., & Talapatra, G. (2011). Interaction of glucose with hemoglobin: A study in aqueous solution and at the air–water interface using the Langmuir–Blodgett technique. Physical Chemistry Chemical Physics, 13(20), 9385–9396. doi:10.1039/c0cp02277b
  • Parrinello, M., & Rahman, A. (1981). Polymorphic transitions in single crystals: A new molecular dynamics method. Journal of Applied Physics, 52(12), 7182–7190. doi:10.1063/1.328693
  • Patra, D., Barakat, C., & Tafech, R. M. (2012). Study on effect of lipophilic curcumin on sub-domain IIA site of human serum albumin during unfolded and refolded states: A synchronous fluorescence spectroscopic study. Colloids and Surfaces B: Biointerfaces, 94, 354–361. doi:10.1016/j.colsurfb.2012.02.017
  • Peppa, M., & Raptis, S. A. (2008). Advanced glycation end products and cardiovascular disease. Current Diabetes Reviews, 4 (2), 92–100. doi:10.2174/157339908784220732
  • Peters, T. Jr, (1995). All about albumin: biochemistry, genetics, and medical applications. New York, NY: Academic Press.
  • Pongprayoon, P., & Mori, T. (2018). The critical role of dimer formation in monosaccharides binding to human serum albumin. Physical Chemistry Chemical Physics, 20(5), 3249–3257. doi:10.1039/C7CP06324E
  • Rabbani, G., Baig, M. H., Lee, E. J., Cho, W. K., Ma, J. Y., & Choi, I. (2017). Biophysical study on the interaction between eperisone hydrochloride and human serum albumin using spectroscopic, calorimetric, and molecular docking analyses. Molecular Pharmaceutics, 14(5), 1656–1665. doi:10.1021/acs.molpharmaceut.6b01124
  • Rahnama, E., Mahmoodian-Moghaddam, M., Khorsand-Ahmadi, S., Saberi, M. R., & Chamani, J. (2015). Binding site identification of metformin to human serum albumin and glycated human serum albumin by spectroscopic and molecular modeling techniques: A comparison study. Journal of Biomolecular Structure and Dynamics, 33(3), 513–533. doi:10.1080/07391102.2014.893540
  • Raza, M., Ahmad, A., Yue, F., Khan, Z., Jiang, Y., Wei, Y., … Qipeng, Y. (2017). Biophysical and molecular docking approaches for the investigation of biomolecular interactions between amphotericin B and bovine serum albumin. Journal of Photochemistry and Photobiology B: Biology, 170, 6–15. doi:10.1016/j.jphotobiol.2017.03.014
  • Raza, M., Wei, Y., Jiang, Y., Ahmad, A., Raza, S., Ullah, S., … Yuan, Q. (2017). Molecular mechanism of tobramycin with human serum albumin for probing binding interactions: Multi-spectroscopic and computational approaches. New Journal of Chemistry, 41 (16), 8203–8213. doi:10.1039/C7NJ02054F
  • Ross, P. D., & Subramanian, S. (1981). Thermodynamics of protein association reactions: Forces contributing to stability. Biochemistry, 20(11), 3096–3102. doi:10.1021/bi00514a017
  • Sahoo, B. K., Ghosh, K. S., & Dasgupta, S. (2009). Molecular interactions of isoxazolcurcumin with human serum albumin: Spectroscopic and molecular modeling studies. Biopolymers, 91(2), 108–119. doi:10.1002/bip.21092
  • Samanta, U., Bahadur, R. P., & Chakrabarti, P. (2002). Quantifying the accessible surface area of protein residues in their local environment. Protein Engineering, Design and Selection, 15(8), 659–667. doi:10.1093/protein/15.8.659
  • Sánchez-Linares, I., Pérez-Sánchez, H., Cecilia, J. M., & García, J. M. (2012). High-throughput parallel blind virtual screening using BINDSURF. BMC Bioinformatics, 13(Suppl 14), S13. doi:10.1186/1471-2105-13-S14-S13
  • Schmid, N., Eichenberger, A. P., Choutko, A., Riniker, S., Winger, M., Mark, A. E., & van Gunsteren, W. F. (2011). Definition and testing of the GROMOS force-field versions 54A7 and 54B7. European Biophysics Journal, 40(7), 843–856. doi:10.1007/s00249-011-0700-9
  • Schuttelkopf, A. W., & van Aalten, D. M. (2004). PRODRG: A tool for high-throughput crystallography of protein-ligand complexes. Acta Crystallographica Section D Biological Crystallography, 60, 1355–1363. doi:10.1107/S0907444904011679
  • Shaklai, N., Garlick, R. L., & Bunn, H. F. (1984). Nonenzymatic glycosylation of human serum albumin alters its conformation and function. Journal of Biological Chemistry, 259(6), 3812–3817.
  • Shuvaev, V. V., Laffont, I., Serot, J.-M., Fujii, J., Taniguchi, N., & Siest, G. (2001). Increased protein glycation in cerebrospinal fluid of Alzheimer’s disease. Neurobiology of Aging, 22(3), 397–402. doi:10.1016/S0197-4580(00)00253-0
  • Singh, S. S., & Mehta, J. (2006). Measurement of drug–protein binding by immobilized human serum albumin-HPLC and comparison with ultrafiltration. Journal of Chromatography B, 834(1–2), 108–116. doi:10.1016/j.jchromb.2006.02.053
  • Singha Roy, A., Ghosh, K. S., & Dasgupta, S. (2013). An investigation into the altered binding mode of green tea polyphenols with human serum albumin on complexation with copper. Journal of Biomolecular Structure and Dynamics, 31(10), 1191–1206. doi:10.1080/07391102.2012.729158
  • Singha Roy, A., Ghosh, P., & Dasgupta, S. (2016). Glycation of human serum albumin affects its binding affinity towards (−)-epigallocatechin gallate. Journal of Inclusion Phenomena and Macrocyclic Chemistry, 85(3–4), 193–202. doi:10.1007/s10847-016-0619-y
  • Singha Roy, A., Ghosh, P., & Dasgupta, S. (2016). Glycation of human serum albumin alters its binding efficacy towards the dietary polyphenols: A comparative approach. Journal of Biomolecular Structure and Dynamics, 34(9), 1911–1918. doi:10.1080/07391102.2015.1094749
  • Singha Roy, A., Kumar Dinda, A., & Dasgupta, S. (2012). Study of the interaction between fisetin and human serum albumin: A biophysical approach. Protein & Peptide Letters, 19, 604–615. doi:10.2174/092986612800493995
  • Singha Roy, A., Tripathy, D. R., Ghosh, A. K., & Dasgupta, S. (2012). An alternate mode of binding of the polyphenol quercetin with serum albumins when complexed with Cu(II). Journal of Luminescence, 132(11), 2943–2951. doi:10.1016/j.jlumin.2012.05.018
  • Sudlow, G., Birkett, D. J., & Wade, D. N. (1975). The characterization of two specific drug binding sites on human serum albumin. Molecular Pharmacology, 11(6), 824–832.
  • Szkudlarek, A., Sułkowska, A., Maciążek-Jurczyk, M., Chudzik, M., & Równicka-Zubik, J. (2016). Effects of non-enzymatic glycation in human serum albumin. Spectroscopic analysis. Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy, 152, 645–653. doi:10.1016/j.saa.2015.01.120
  • Tessier, F. (2010). The Maillard reaction in the human body. The main discoveries and factors that affect glycation. Pathologie Biologie, 58(3), 214–219. doi:10.1016/j.patbio.2009.09.014
  • Tao, P., Li, Z., Woolfork, A. G., & Hage, D. S. (2019). Characterization of tolazamide binding with glycated and normal human serum albumin by using high-performance affinity chromatography. Journal of Pharmaceutical and Biomedical Analysis, 166, 273–280. doi:10.1016/j.jpba.2019.01.025
  • Vlassara, H. (1996). Advanced glycosylation in nephropathy of diabetes and aging. Advances in Nephrology from the Necker Hospital, 25, 303–315.
  • Vlassara, H., & Palace, M. R. (2002). Diabetes and advanced glycation endproducts. Journal of Internal Medicine, 251(2), 87–101. doi:10.1046/j.1365-2796.2002.00932.x
  • Voziyan, P. A., Khalifah, R. G., Thibaudeau, C., Yildiz, A., Jacob, J., Serianni, A. S., & Hudson, B. G. (2003). Modification of proteins in vitro by physiological levels of glucose pyridoxamine inhibits conversion of Amadori intermediate to advanced glycation end-products through binding of redox metal ions. Journal of Biological Chemistry, 278(47), 46616–46624. doi:10.1074/jbc.M307155200
  • Wang, X., Zou, L., Mi, C., Yu, H., Dong, M., & Teng, Y. (2019). Characterization of binding interaction of triclosan and bovine serum albumin. Journal of Environmental Science Health A Toxic Hazardous Substance Environmental Engineering, 1–8. [AQ]
  • Whitmore, L., & Wallace, B. A. (2004). DICHROWEB, an online server for protein secondary structure analyses from circular dichroism spectroscopic data. Nucleic Acids Research, 32(Web Server), W668–673. doi:10.1093/nar/gkh371
  • Xu, J., Wang, M., Zheng, Y., & Tang, L. (2019). Spectroscopic technique-based comparative investigation on the interaction of theaflavins with native and glycated human serum albumin. Molecules, 24(17), 3171. doi:10.3390/molecules24173171
  • Zhang, H. X., Huang, X., & Zhang, M. (2008). Thermodynamic studies on the interaction of dioxopromethazine to beta-cyclodextrin and bovine serum albumin. Journal of Fluorescence, 18(3–4), 753–760. doi:10.1007/s10895-008-0348-8
  • Zsila, F., Bikadi, Z., & Simonyi, M. (2003). Probing the binding of the flavonoid, quercetin to human serum albumin by circular dichroism, electronic absorption spectroscopy and molecular modelling methods. Biochemical Pharmacology, 65(3), 447–456. doi:10.1016/S0006-2952(02)01521-6

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.