353
Views
18
CrossRef citations to date
0
Altmetric
Research Articles

Investigating the mechanism of binding of nalidixic acid with deoxyribonucleic acid and serum albumin: a biophysical and molecular docking approaches

, , , , &
Pages 570-585 | Received 19 Nov 2019, Accepted 30 Dec 2019, Published online: 20 Jan 2020

References

  • Aamir Qureshi, M., & Javed, S. (2019). Structural dynamics studies on the binding of aflatoxin B1 to chicken egg albumin using spectroscopic techniques and molecular docking. Journal of Biomolecular Structure and Dynamics, 1–12. doi:10.1080/07391102.2019.1652690
  • Afrin, S., Rahman, Y., Sarwar, T., Husain, M. A., Ali, A., & Tabish, M. (2017). Molecular spectroscopic and thermodynamic studies on the interaction of anti-platelet drug ticlopidine with calf thymus DNA. Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy, 186, 66–75. doi:10.1016/j.saa.2017.05.073
  • Afrin, S., Rahman, Y., & Tabish, M. (2019). Elucidating the interaction of ticlopidine with serum albumin and its role in bilirubin displacement in vitro. Journal of Biomolecular Structure and Dynamics, 37(4), 863–876. doi:10.1080/07391102.2018.1449667
  • Alam, M. M., Abul Qais, F., Ahmad, I., Alam, P., Hasan Khan, R., & Naseem, I. (2018). Multi-spectroscopic and molecular modelling approach to investigate the interaction of riboflavin with human serum albumin. Journal of Biomolecular Structure and Dynamics, 36(3), 795–809. doi:10.1080/07391102.2017.1298470
  • Appelbaum, P. C., & Hunter, P. A. (2000). The fluoroquinolone antibacterials: Past, present and future perspectives. International Journal of Antimicrobial Agents, 16(1), 5–15. doi:10.1016/S0924-8579(00)00192-8
  • Bi, S., Zhao, T., Wang, Y., Zhou, H., Pang, B., & Gu, T. (2015). Binding studies of terbutaline sulfate to calf thymus DNA using multispectroscopic and molecular docking techniques. Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy, 150, 921–927. doi:10.1016/j.saa.2015.06.042
  • Bolattin, M. B., Nandibewoor, S. T., Joshi, S. D., Dixit, S. R., & Chimatadar, S. A. (2016). Interaction of hydralazine with human serum albumin and effect of $β$-cyclodextrin on binding: Insights from spectroscopic and molecular docking techniques. Industrial & Engineering Chemistry Research, 55(19), 5454–5464. doi:10.1021/acs.iecr.6b00517
  • Chen, D., Wu, Q., Wang, J., Wang, Q., & Qiao, H. (2015). Spectroscopic analyses and studies on respective interaction of cyanuric acid and uric acid with bovine serum albumin and melamine. Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy, 135, 511–520. doi:10.1016/j.saa.2014.07.038
  • Fei, Y., Lu, G., Fan, G., & Wu, Y. (2009). Spectroscopic studies on the binding of a new quinolone antibacterial agent: Sinafloxacin to DNA. Analytical Sciences, 25(11), 1333–1338. doi:10.2116/analsci.25.1333
  • Ghaderi, M., Bathaie, S. Z., Saboury, A.-A., Sharghi, H., & Tangestaninejad, S. (2007). Interaction of an Fe derivative of TMAP (Fe (TMAP) OAc) with DNA in comparison with free-base TMAP. International Journal of Biological Macromolecules, 41(2), 173–179. doi:10.1016/j.ijbiomac.2007.01.014
  • Gills, J. J., LoPiccolo, J., & Dennis, P. A. (2008). Nelfinavir, a new anti-cancer drug with pleiotropic effects and many paths to autophagy. Autophagy, 4(1), 107–109. doi:10.4161/auto.5224
  • Hanwell, M. D., Curtis, D. E., Lonie, D. C., Vandermeersch, T., Zurek, E., & Hutchison, G. R. (2012). Avogadro: An advanced semantic chemical editor, visualization, and analysis platform. Journal of Cheminformatics, 4(1), 17. doi:10.1186/1758-2946-4-17
  • Husain, M. A., Ishqi, H. M., Rehman, S. U., Sarwar, T., Afrin, S., Rahman, Y., & Tabish, M. (2017). Elucidating the interaction of sulindac with calf thymus DNA: Biophysical and in silico molecular modelling approach. New Journal of Chemistry, 41(24), 14924–14935. doi:10.1039/C7NJ03698A
  • Husain, M. A., Ishqi, H. M., Sarwar, T., Rehman, S. U., & Tabish, M. (2017). Interaction of indomethacin with calf thymus DNA: A multi-spectroscopic, thermodynamic and molecular modelling approach. MedChemComm, 8(6), 1283–1296. doi:10.1039/C7MD00094D
  • Ikhlas, S., & Ahmad, M. (2018). Binding studies of guggulsterone-E to calf thymus DNA by multi-spectroscopic, calorimetric and molecular docking studies. Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy, 190, 402–408. doi:10.1016/j.saa.2017.09.065
  • Kandagal, P. B., Ashoka, S., Seetharamappa, J., Shaikh, S. M. T., Jadegoud, Y., & Ijare, O. B. (2006). Study of the interaction of an anticancer drug with human and bovine serum albumin: Spectroscopic approach. Journal of Pharmaceutical and Biomedical Analysis, 41(2), 393–399. doi:10.1016/j.jpba.2005.11.037
  • Kelly, S. M., Jess, T. J., & Price, N. C. (2005). How to study proteins by circular dichroism. Biochimica et Biophysica Acta (BBA) - Proteins and Proteomics, 1751(2), 119–139. doi:10.1016/j.bbapap.2005.06.005
  • Khan, A. B., Khan, J. M., Ali, M. S., Khan, R. H., & Din, K. (2011). Spectroscopic approach of the interaction study of amphiphilic drugs with the serum albumins. Colloids and Surfaces B: Biointerfaces, 87(2), 447–453. doi:10.1016/j.colsurfb.2011.06.007
  • Krieger, E., Joo, K., Lee, J., Lee, J., Raman, S., Thompson, J., … Karplus, K. (2009). Improving physical realism, stereochemistry, and side-chain accuracy in homology modeling: Four approaches that performed well in CASP8. Proteins: Structure, Function, and Bioinformatics, 77(S9), 114–122. doi:10.1002/prot.22570
  • MacDonald, M. L., Lamerdin, J., Owens, S., Keon, B. H., Bilter, G. K., Shang, Z. … (2006). Identifying off-target effects and hidden phenotypes of drugs in human cells. Nature Chemical Biology, 2(6), 329–337. doi:10.1038/nchembio790
  • Mavromoustakos, T. (2011). Editorial [Hot Topic: Methodologies and applied strategies in the rational drug design (Guest Editor: T. Mavromoustakos)]. Current Medicinal Chemistry, 18(17), 2516–2516. doi:10.2174/092986711795933650
  • Moghadam, N. H., Salehzadeh, S., Tanzadehpanah, H., Saidijam, M., Karimi, J., & Khazalpour, S. (2019). In vitro cytotoxicity and DNA/HSA interaction study of triamterene using molecular modelling and multi-spectroscopic methods. Journal of Biomolecular Structure and Dynamics, 37(9), 2242–2253. doi:10.1080/07391102.2018.1489305
  • Morris, G. M., Huey, R., Lindstrom, W., Sanner, M. F., Belew, R. K., Goodsell, D. S., & Olson, A. J. (2009). AutoDock4 and AutoDockTools4: Automated docking with selective receptor flexibility. Journal of Computational Chemistry, 30(16), 2785–2791. doi:10.1002/jcc.21256
  • Pettersen, E. F., Goddard, T. D., Huang, C. C., Couch, G. S., Greenblatt, D. M., Meng, E. C., & Ferrin, T. E. (2004). UCSF Chimera—A visualization system for exploratory research and analysis. Journal of Computational Chemistry, 25(13), 1605–1612. doi:10.1002/jcc.20084
  • Pjura, P. E., Grzeskowiak, K., & Dickerson, R. E. (1987). Binding of Hoechst 33258 to the minor groove of B-DNA. Journal of Molecular Biology, 197(2), 257–271. doi:10.1016/0022-2836(87)90123-9
  • Rahban, M., Divsalar, A., Saboury, A. A., & Golestani, A. (2010). Nanotoxicity and spectroscopy studies of silver nanoparticle: Calf thymus DNA and K562 as targets. The Journal of Physical Chemistry C, 114(13), 5798–5803. doi:10.1021/jp910656g
  • Rahman, Y., Afrin, S., Husain, M. A., Sarwar, T., Ali, A., & Tabish, M. (2017). Unravelling the interaction of pirenzepine, a gastrointestinal disorder drug, with calf thymus DNA: An in vitro and molecular modelling study. Archives of Biochemistry and Biophysics, 625, 1–12. doi:10.1016/j.abb.2017.05.014
  • Rehman, S. U., Yaseen, Z., Husain, M. A., Sarwar, T., Ishqi, H. M., & Tabish, M. (2014). Interaction of 6 mercaptopurine with calf thymus DNA–deciphering the binding mode and photoinduced DNA damage. PLoS One, 9(4), e93913. doi:10.1371/journal.pone.0093913
  • Sarwar, T., Husain, M. A., Rehman, S. U., Ishqi, H. M., & Tabish, M. (2015). Multi-spectroscopic and molecular modelling studies on the interaction of esculetin with calf thymus DNA. Molecular Biosystems, 11(2), 522–531. doi:10.1039/C4MB00636D
  • Sarwar, T., Rehman, S. U., Husain, M. A., Ishqi, H. M., & Tabish, M. (2015). Interaction of coumarin with calf thymus DNA: Deciphering the mode of binding by in vitro studies. International Journal of Biological Macromolecules, 73, 9–16. doi:10.1016/j.ijbiomac.2014.10.017
  • Shi, J., Pan, D., Jiang, M., Liu, T.-T., & Wang, Q. (2016). Binding interaction of ramipril with bovine serum albumin (BSA): Insights from multi-spectroscopy and molecular docking methods. Journal of Photochemistry and Photobiology B: Biology, 164, 103–111. doi:10.1016/j.jphotobiol.2016.09.025
  • Siddiqui, S., Ameen, F., Jahan, I., Nayeem, S. M., & Tabish, M. (2019). A comprehensive spectroscopic and computational investigation on the binding of the anti-asthmatic drug triamcinolone with serum albumin. New Journal of Chemistry, 43(10), 4137–4151. doi:10.1039/C8NJ05486J
  • Siddiqui, S., Siddiqui, M. F., Khan, S., & Bano, B. (2019). Insight into the biochemical characterization of phytocystatin from Glycine max and its interaction with Cd+ 2 and Ni+ 2. Journal of Molecular Recognition, 32(10). 1–10. doi:10.1002/jmr.2787
  • Sood, D., Kumar, N., Rathee, G., Singh, A., Tomar, V., & Chandra, R. (2018). Mechanistic interaction study of bromo-noscapine with bovine serum albumin employing spectroscopic and chemoinformatics approaches. Scientific Reports, 8(1), 16964. doi:10.1038/s41598-018-35384-6
  • Suryawanshi, V. D., Walekar, L. S., Gore, A. H., Anbhule, P. V., & Kolekar, G. B. (2016). Spectroscopic analysis on the binding interaction of biologically active pyrimidine derivative with bovine serum albumin. Journal of Pharmaceutical Analysis, 6(1), 56–63. doi:10.1016/j.jpha.2015.07.001
  • Usman, A., & Ahmad, M. (2017). Binding of Bisphenol-F, a bisphenol analogue, to calf thymus DNA by multi-spectroscopic and molecular docking studies. Chemosphere, 181, 536–543. doi:10.1016/j.chemosphere.2017.04.115
  • Wagman, A. S., & Wentland, M. P. (2007). Quinolone antibacterial agents. United Kingdom: Elsevier Ltd.
  • Zhang, L., Sahu, I. D., Xu, M., Wang, Y., & Hu, X. (2017). Data for $β$-lactoglobulin conformational analysis after (-)-epigallocatechin gallate and metal ions binding. Data in Brief, 10, 474–477. doi:10.1016/j.dib.2016.12.021

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.