641
Views
39
CrossRef citations to date
0
Altmetric
Research Articles

Identification of a novel binding mechanism of Quinoline based molecules with lactate dehydrogenase of Plasmodium falciparum

, &
Pages 348-356 | Received 10 Dec 2019, Accepted 23 Dec 2019, Published online: 20 Jan 2020

References

  • Abad-Zapatero, C., & Metz, J. T. (2005). Ligand efficiency indices as guideposts for drug discovery. Drug Discovery Today, 10(7), 464–469. doi:10.1016/S1359-6446(05)03386-6
  • Abraham, M., Van Der Spoel, D., Lindahl, E., Hess, B., Spoel, D. V D., & Lindahl, E. (2014). GROMACS User Manual version 5.0.4. www.Gromacs.Org. 10.1007/SpringerReference_28001.
  • Arrow, K. J., Panosian, C., & Gelband, H. (2004). Saving lives, buying time: Economics of malaria drugs in an age of resistance. In Institute of Medicine (US) Committee on the economics of antimalarial drugs. Washington, DC: National Academic Press. ISBN-10:0-309-09218-3.
  • Berendsen, H. J. C., Postma, J. P. M. V., van Gunsteren, W. F., DiNola, A., & Haak, J. R. (1984). Molecular dynamics with coupling to an external bath. Journal of Chemical Physics, 81(8), 3684–3690. doi:10.1063/1.448118
  • Bhardwaj, V., & Purohit, R. (2019). Computational investigation on effect of mutations in PCNA resulting in structural perturbations and inhibition of mismatch repair pathway. Journal of Biomolecular Structure and Dynamics, 1–12. doi:10.1080/07391102.2019.1621210
  • Bhardwaj, V., Singh, R., Singh, P., Purohit, R., & Kumar, S. (2019). Elimination of bitter-off taste of stevioside through structure modification and computational interventions. Journal of Theoretical Biology, 486, 110094. doi:10.1016/j.jtbi.2019.110094
  • Biovia, D. S., Berman, H. M., Westbrook, J., Feng, Z., Gilliland, G., Bhat, T. N., … Richmond, T. J. (2000). Dassault Systèmes BIOVIA, Discovery Studio Visualizer, v.17.2, San Diego: Dassault Systèmes, 2016. The Journal of Chemical Physics. doi:10.1016/0021-9991(74)90010-2.
  • Braga, C. B. e., Martins, A. C., Cayotopa, A. D. E., Klein, W. W., Schlosser, A. R., Silva, A. F. D., … da Silva-Nunes, M. (2015). Side effects of chloroquine and primaquine and symptom reduction in malaria endemic area (Mâncio lima, Acre, Brazil). Interdisciplinary Perspectives on Infectious Diseases, 2015, 1–7. doi:10.1155/2015/346853
  • Chiu, S. W., Pandit, S. A., Scott, H. L., & Jakobsson, E. (2009). An improved united atom force field for simulation of mixed lipid bilayers. The Journal of Physical Chemistry B, 113(9), 2748–2763. doi:10.1021/jp807056c
  • Egan, T. J., & Ncokazi, K. K. (2005). Quinoline antimalarials decrease the rate of β-hematin formation. Journal of Inorganic Biochemistry, 99(7), 1532–1539. doi:10.1016/j.jinorgbio.2005.04.013
  • Essmann, U., Perera, L., Berkowitz, M. L., Darden, T., Lee, H., & Pedersen, L. G. (1995). A smooth particle mesh Ewald method. Journal of Chemical Physics, 103(9), 8577–8593.
  • Fidock, D. A., Nomura, T., Talley, A. K., Cooper, R. A., Dzekunov, S. M., Ferdig, M. T., … Wellems, T. E. (2000). Mutations in the P. falciparum digestive vacuole transmembrane protein PfCRT and evidence for their role in chloroquine resistance. Molecular Cell, 6(4), 861–871. doi:10.1016/S1097-2765(05)00077-8
  • Flegg, J. A., Metcalf, C. J. E., Gharbi, M., Venkatesan, M., Shewchuk, T., Sibley, C. H., & Guerin, P. J. (2013). Trends in antimalarial drug use in Africa. American Journal of Tropical Medicine and Hygiene, 89(5), 857–865. 10.4269/ajtmh.13-0129.
  • Gopalakrishnan, C., Jethi, S., Kalsi, N., & Purohit, R. (2016). Biophysical aspect of huntingtin protein during polyQ: An in silico insight. Cell Biochemistry and Biophysics, 74(2), 129–139. doi:10.1007/s12013-016-0728-7
  • Guerin, P. J., Olliaro, P., Nosten, F., Druilhe, P., Laxminarayan, R., Binka, F., … White, N. J. (2002). Malaria: Current status of control, diagnosis, treatment, and a proposed agenda for research and development. Lancet Infectious Diseases, 2(9), 564–573. 10.1016/S1473-3099(02)00372-9.
  • Hopkins, A. L., Groom, C. R., & Alex, A. (2004). Ligand efficiency: A useful metric for lead selection. Drug Discovery Today, 9(10), 430–431. doi:10.1016/S1359-6446(04)03069-7
  • John, A., Sivashanmugam, M., Umashankar, V., & Natarajan, S. K. (2017). Virtual screening, molecular dynamics, and binding free energy calculations on human carbonic anhydrase IX catalytic domain for deciphering potential leads. Journal of Biomolecular Structure and Dynamics, 35(10), 2155–2168. doi:10.1080/07391102.2016.1207565
  • Kalsi, N., Gopalakrishnan, C., Rajendran, V., & Purohit, R. (2016). Biophysical aspect of phosphatidylinositol 3-kinase and role of oncogenic mutants (E542K & E545K). Journal of Biomolecular Structure and Dynamics, 34, 1–11. doi:10.1080/07391102.2015.1127774
  • Kollman, P. A., Massova, I., Reyes, C., Kuhn, B., Huo, S., Chong, L., … Cheatham, T. E. (2000). Calculating structures and free energies of complex molecules: Combining molecular mechanics and continuum models. Accounts of Chemical Research, 33(12), 889–897. doi:10.1021/ar000033j
  • Kumar, R., Sharma, R., Kumar, I., Upadhyay, P., Dhiman, A. K., Kumar, R., … Sharma, U. (2019). Evaluation of Antiplasmodial Potential of C2 and C8 modified quinolines: In vitro and in silico Study. Medicinal Chemistry, 15(7), 790–800. doi:10.2174/1573406414666181015144413
  • Kumari, R., Kumar, R., & Lynn, A., Open Source Drug Discovery Consortium. (2014). g_mmpbsa-a GROMACS tool for high-throughput MM-PBSA calculations. Journal of Chemical Information and Modeling, 54 (7), 1951–1962. doi:10.1021/ci500020m
  • Kuntz, I. D., Chen, K., Sharp, K. A., & Kollman, P. A. (1999). The maximal affinity of ligands. Proceedings of the National Academy of Sciences of Sciences, 96(18), 9997–10002. doi:10.1073/pnas.96.18.9997
  • Massova, I., & Kollman, P. A. (2000). Combined molecular mechanical and continuum solvent approach (MM- PBSA/GBSA) to predict ligand binding. Perspectives in Drug Discovery and Design, 18(1), 113–135. 10.1023/A:1008763014207.
  • Meng, E. C., Pettersen, E. F., Couch, G. S., Huang, C. C., & Ferrin, T. E. (2006). Tools for integrated sequence-structure analysis with UCSF Chimera. BMC Bioinformatics, 7, 339. 10.1186/1471-2105-7-339.
  • Menting, J. G. T., Tilley, L., Deady, L. W., Ng, K., Simpson, R. J., Cowman, A. F., & Foley, M. (1997). The antimalarial drug, chloroquine, interacts with lactate dehydrogenase from Plasmodium falciparum. Molecular and Biochemical Parasitology, 88(1–2), 215–224. doi:10.1016/S0166-6851(97)00095-9
  • Penna-Coutinho, J., Cortopassi, W. A., Oliveira, A. A., França, T. C. C., & Krettli, A. U. (2011). Antimalarial activity of potential inhibitors of Plasmodium falciparum lactate dehydrogenase enzyme selected by docking studies. PLoS One, 6(7), e21237. doi:10.1371/journal.pone.0021237
  • Rajendran, V. (2016). Structural analysis of oncogenic mutation of isocitrate dehydrogenase 1. Molecular Biosystems, 12(7), 2276–2287. doi:10.1039/C6MB00182C
  • Rajendran, V., Gopalakrishnan, C., & Purohit, R. (2016). Impact of point mutation P29S in RAC1 on tumorigenesis. Tumor Biology, 37(11), 15293–15304. doi:10.1007/s13277-016-5329-y
  • Rajendran, V., Gopalakrishnan, C., & Sethumadhavan, R. (2018). Pathological role of a point mutation (T315I) in BCR-ABL1 protein—A computational insight. Journal of Cellular Biochemistry, 119(1), 918–925. doi:10.1002/jcb.26257
  • Read, J. A., Wilkinson, K. W., Tranter, R., Sessions, R. B., & Brady, R. L. (1999). Chloroquine binds in the cofactor binding site of Plasmodium falciparum lactate dehydrogenase. Journal of Biological Chemistry, 274(15), 10213–10218. doi:10.1074/jbc.274.15.10213
  • Reulecke, I., Lange, G., Albrecht, J., Klein, R., & Rarey, M. (2008). Towards an integrated description of hydrogen bonding and dehydration: Decreasing false positives in virtual screening with the HYDE scoring function. ChemMedChem, 3(6), 885–897. doi:10.1002/cmdc.200700319
  • Rose, P. W., Prlić, A., Altunkaya, A., Bi, C., Bradley, A. R., Christie, C. H., … Burley, S. K. (2017). The RCSB protein data bank: Integrative view of protein, gene and 3D structural information. Nucleic Acids Research, 45(D1), D271–D281. doi:10.1093/nar/gku1214
  • Sadhasivam, A., & Vetrivel, U. (2019). Identification of potential drugs targeting L,L-diaminopimelate aminotransferase of Chlamydia trachomatis: An integrative pharmacoinformatics approach. Journal of Cellular Biochemistry, 120(2), 2271–2288. doi:10.1002/jcb.27553
  • Šagud, I., Škorić, I., Vuk, D., Ratković, A., & Burčul, F. (2019). Acetyl- and butyrylcholinesterase inhibitory activity of selected photochemicallysynthesized polycycles. Turkish Journal of Chemistry, 43(4), 1170–1182. doi:10.3906/kim-1903-74
  • Schärfer, C., Schulz-Gasch, T., Ehrlich, H. C., Guba, W., Rarey, M., & Stahl, M. (2013). Torsion angle preferences in druglike chemical space: A comprehensive guide. Journal of Medicinal Chemistry, 56(5), 2016–2028. doi:10.1021/jm3016816
  • Schneider, N., Lange, G., Hindle, S., Klein, R., & Rarey, M. (2013). A consistent description of HYdrogen bond and DEhydration energies in protein-ligand complexes: Methods behind the HYDE scoring function. Journal of Computer-Aided Molecular Design, 27(1), 15–29. doi:10.1007/s10822-012-9626-2
  • Schüttelkopf, A. W., & Van Aalten, D. M. F. (2004). PRODRG: A tool for high-throughput crystallography of protein-ligand complexes. Acta Crystallographica Section D: Biological Crystallography, 60(8), 1355–1363. 10.1107/S0907444904011679.
  • Sharma, J., Bhardwaj, V., & Purohit, R. (2019). Structural Perturbations due to Mutation (H1047R) in Phosphoinositide-3-kinase (PI3Kα) and its involvement in oncogenesis: An in silico insight. ACS Omega, 4(14), 15815–15823. doi:10.1021/acsomega.9b01439
  • Singh, R., Bhardwaj, V., Das, P., & Purohit, R. (2019). Natural analogues inhibiting selective cyclin-dependent kinase protein isoforms: A computational perspective. Journal of Biomolecular Structure and Dynamics, 1–10. doi:10.1080/07391102.2019.1696709.
  • Snow, R. W., Guerra, C. A., Noor, A. M., Myint, H. Y., & Hay, S. I. (2005). The global distribution of clinical episodes of Plasmodium falciparum malaria. Nature, 434(7030), 214–217. doi:10.1038/nature03342
  • Tanwar, G., & Purohit, R. (2019). Gain of native conformation of Aurora A S155R mutant by small molecules. Journal of Cellular Biochemistry, 120(7), 11104–11114. doi:10.1002/jcb.28387
  • Van Der Spoel, D., Lindahl, E., Hess, B., Groenhof, G., Mark, A. E., & Berendsen, H. J. C. (2005). GROMACS: Fast, flexible, and free. Journal of Computational Chemistry, 26(16), 1701–1718. doi:10.1002/jcc.20291
  • Waingeh, V. F., Groves, A. T., & Eberle, J. A. (2013). Binding of Quinoline-based inhibitors to < i>Plasmodium falciparum</i > Lactate dehydrogenase: A molecular docking study. Open Journal of Biophysics, 3(4), 285–290. doi:10.4236/ojbiphy.2013.34034
  • Wellems, T. E., & Plowe, C. V. (2001). Perspective: Chloroquine-resistant malaria. The Journal of Infectious Diseases, 184(6), 770–776. doi:10.1086/322858
  • Wiwanitkit, V. (2007). Plasmodium and host lactate dehydrogenase molecular function and biological pathways: Implication for antimalarial drug discovery. Chemical Biology and Drug Design, 69(4), 280–283. doi:10.1111/j.1747-0285.2007.00495.x.
  • Zheng, J., & Frisch, M. J. (2017). Efficient Geometry Minimization and Transition Structure Optimization Using Interpolated Potential Energy Surfaces and Iteratively Updated Hessians. Journal of Chemical Theory and Computation. 10.1021/acs.jctc.7b00719

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.