236
Views
8
CrossRef citations to date
0
Altmetric
Research Articles

Exploring the combination characteristics of lumefantrine, an antimalarial drug and human serum albumin through spectroscopic and molecular docking studies

, , &
Pages 691-702 | Received 18 Dec 2019, Accepted 03 Jan 2020, Published online: 22 Jan 2020

References

  • Abou-Zied, O. K., & Al-Shihi, O. I. K. (2008). Characterization of subdomain IIA binding site of human serum albumin in its native, unfolded, and refolded states using small molecular probes. Journal of the American Chemical Society, 130(32), 10793–10801. doi:10.1021/ja8031289
  • Aki, H., & Yamamoto, M. (1994). Thermodynamic characterization of drug-binding to human serum-albumin by isothermal titration microcalorimetry. Journal of Pharmaceutical Sciences, 83(12), 1712–1716. doi:10.1002/jps.2600831213
  • Ansari, S. S., Khan, R. H., & Naqvi, S. (2018). Probing the intermolecular interactions into serum albumin and anthraquinone systems: A spectroscopic and docking approach. Journal of Biomolecular Structure and Dynamics, 36(13), 3362–3375. doi:10.1080/07391102.2017.1388284
  • Ayranci, E., & Duman, O. (2004). Binding of fluoride, bromide and iodide to bovine serum albumin, studied with ion-selective electrodes. Food Chemistry, 84(4), 539–543. doi:10.1016/S0308-8146(03)00276-0
  • Balaei, F., & Ghobadi, S. (2019). Hydrochlorothiazide binding to human serum albumin induces some compactness in the molecular structure of the protein: A multi-spectroscopic and computational study. Journal of Pharmaceutical and Biomedical Analysis, 162, 1–8. doi:10.1010/j.jpba.2018.09.009
  • Bi, S. Y., Ding, L., Tian, Y., Song, D. Q., Zhou, X., Liu, X., & Zhang, H. Q. (2004). Investigation of the interaction between flavonoids and human serum albumin. Journal of Molecular Structure, 703(1–3), 37–45. doi:10.1016/j.molstruc.2004.05.026
  • Bijari, N., Shokoohinia, Y., Ashrafi-Kooshk, M. R., Ranjbar, S., Parvaneh, S., Moieni-Arya, M., & Khodarahmi, R. (2013). Spectroscopic study of interaction between osthole and human serum albumin: Identification of possible binding site of the compound. Journal of Luminescence, 143, 328–336. doi:10.1016/j.jlumin.2013.04.045
  • Bozoglan, B. K., Tunc, S., & Duman, O. (2014). Investigation of neohesperidin dihydrochalcone binding to human serum albumin by spectroscopic methods. Journal of Luminescence, 155, 198–204. doi:10.1016/j.jlumin.2014.06.032
  • Brandts, J. F., & Lin, L. N. (1990). Study of strong to ultratight protein interactions using differential scanning calorimetry. Biochemistry, 29(29), 6927–6940. doi:10.1021/bi00481a024
  • Carter, D. C., & Ho, J. X. (1994). Structure of serum-albumin. In V. N. Schumaker (Ed.), Advances in protein chemistry, Vol. 45: Lipoproteins, apolipoproteins, and lipases (Vol. 45, pp. 153–203). Cambridge, USA: Academic Press.
  • Celej, M. S., Montich, C. G., & Fidelio, G. D. (2003). Protein stability induced by ligand binding correlates with changes in protein flexibility. Protein Science, 12(7), 1496–1506. doi:10.1110/ps.0240003
  • Chen, Y.-H., Yang, J. T., & Martinez, H. M. (1972). Determination of the secondary structures of proteins by circular dichroism and optical rotatory dispersion. Biochemistry, 11(22), 4120–4131. doi:10.1021/bi00772a015
  • Das, P., Chaudhari, S. K., Das, A., Kundu, S., & Saha, C. (2019). Interaction of flavonols with human serum albumin: A biophysical study showing structure-activity relationship and enhancement when coated on silver nanoparticles. Journal of Biomolecular Structure and Dynamics, 37(6), 1414–1426. doi:10.1080/07391102.2018.1462732
  • Feroz, S. R., Mohamad, S. B., Bakri, Z. S., Malek, S. N., & Tayyab, S. (2013). Probing the interaction of a therapeutic flavonoid, pinostrobin with human serum albumin: Multiple spectroscopic and molecular modeling investigations. PLoS One, 8(10), e76067. doi:10.1371/journal.pone.0076067
  • Feroz, S., Mohamad, S., Lee, G., Malek, S., & Tayyab, S. (2015). Supramolecular interaction of 6-shogaol, a therapeutic agent of Zingiber officinale with human serum albumin as elucidated by spectroscopic, calorimetric and molecular docking methods. Phytomedicine, 22(6), 621–630. doi:10.1016/j.phymed.2015.03.016
  • Fukada, H., Sturtevant, J., & Quiocho, F. (1983). Thermodynamics of the binding of L-arabinose and of D-galactose to the L-arabinose-binding protein of Escherichia coli. Journal of Biological Chemistry, 258(21), 13193–13198
  • Grigoryan, K. R. (2009). Preferential solvatation of human serum albumin in dimethylsulfoxide-H2O binary solution. Russian Journal of Physical Chemistry A, 83(13), 2368–2370. doi:10.1134/S0036024409130329
  • Guo, Q. Y., Liu, M., Zhao, Y. N., Wu, Y. S., Liu, J., Cai, C., … Han, J. (2019). Spectroscopic and cytotoxicity studies on the combined interaction of (-)-epigallocatechin-3-gallate and anthracycline drugs with human serum albumin. Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy, 222, 117213. doi:10.1016/j.saa.2019.117213
  • Halgren, T. A. (1996). Merck molecular force field.1. Basis, form, scope, parameterization, and performance of MMFF94. Journal of Computational Chemistry, 17(5-6), 490–519. doi:10.1002/(sici)1096-987x(199604)17:5/6 < 490::aid-jcc1 > 3.0.co;2-p
  • Hanwell, M. D., Curtis, D. E., Lonie, D. C., Vandermeersch, T., Zurek, E., & Hutchison, G. R. (2012). Avogadro: An advanced semantic chemical editor, visualization, and analysis platform. Journal of Cheminformatics, 4 (1), 17. doi:10.1186/1758-2946-4-17
  • He, X. M., & Carter, D. C. (1992). Atomic structure and chemistry of human serum albumin. Nature, 358(6383), 209–215. doi:10.1038/358209a0
  • Jafari, F., Samadi, S., Nowroozi, A., Sadrjavadi, K., Moradi, S., Ashrafi-Kooshk, M. R., & Shahlaei, M. (2018). Experimental and computational studies on the binding of diazinon to human serum albumin. Journal of Biomolecular Structure and Dynamics, 36(6), 1490–1510. doi:10.1080/07391102.2017.1329096
  • Kabir, M. Z., Feroz, S. R., Mukarram, A. K., Alias, Z., Mohamad, S. B., & Tayyab, S. (2016). Interaction of a tyrosine kinase inhibitor, vandetanib with human serum albumin as studied by fluorescence quenching and molecular docking. Journal of Biomolecular Structure and Dynamics, 34(8), 1693–1704. doi:10.1080/07391102.2015.1089187
  • Kabir, M. Z., Ghani, H., Mohamad, S. B., Alias, Z., & Tayyab, S. (2018). Interactive association between RhoA transcriptional signaling inhibitor, CCG1423 and human serum albumin: Biophysical and in silico studies. Journal of Biomolecular Structure and Dynamics, 36(10), 2495–2507. doi:10.1080/07391102.2017.1360207
  • Kamat, B. P. (2005). Study of the interaction between fluoroquinolones and bovine serum albumin. Journal of Pharmaceutical and Biomedical Analysis, 39(5), 1046–1050. doi:10.1016/j.jpba.2005.05.013
  • Khanna, N. C., Tokuda, M., & Waisman, D. M. (1986). Conformational-changes induced by binding of divalent-cations to calregulin. Journal of Biological Chemistry, 261(19), 8883–8887 [PMC][3722179]
  • Kragh-Hansen, U. (1981). Molecular aspects of ligand-binding to serum-albumin. Pharmacological Reviews, 33(1), 17–53.
  • Kragh-Hansen, U., Chuang, V. T. G., & Otagiri, M. (2002). Practical aspects of the ligand-binding and enzymatic properties of human serum albumin. Biological & Pharmaceutical Bulletin, 25(6), 695–704. doi:10.1248/bpb.25.695
  • Kurono, M., Fujii, A., Murata, M., Fujitani, B., & Negoro, T. (2006). Stereospecific recognition of a spirosuccinimide type aldose reductase inhibitor (AS-3201) by plasma proteins: A significant role of specific binding by serum albumin in the improved potency and stability. Biochemical Pharmacology, 71(3), 338–353. doi:10.1016/j.bcp.2005.10.036
  • Lakowicz, J. R. (2006). Principles of fluorescence spectroscopy (3rd ed.). New York, NY: Springer.
  • Li, Y., Chen, C., Zhang, C. P., Duan, J. Y., Yao, H. K., & Wei, Q. L. (2017). Probing the binding interaction of AKR with human serum albumin by multiple fluorescence spectroscopy and molecular modeling. Journal of Biomolecular Structure and Dynamics, 35(6), 1189–1199. doi:10.1080/07391102.2016.1174622
  • Morris, G. M., Huey, R., Lindstrom, W., Sanner, M. F., Belew, R. K., Goodsell, D. S., & Olson, A. J. (2009). AutoDock4 and AutoDockTools4: Automated docking with selective receptor flexibility. Journal of Computational Chemistry, 30(16), 2785–2791. doi:10.1002/jcc.21256
  • Moyo, Q. M., Besser, M., Lynn, R., & Lever, A. M. L. (2019). Persistence of imported malaria into the United Kingdom: An epidemiological review of risk factors and at-risk groups. Clinical Infectious Diseases, 69(7), 1156–1162. doi:10.1093/cid/ciy1037
  • Painter, L., Harding, M. M., & Beeby, P. J. (1998). Synthesis and interaction with human serum albumin of the first 3,18-disubstituted derivative of bilirubin. Journal of the Chemical Society, Perkin Transactions, 1(18), 3041–3044. doi:10.1039/a803429j
  • Papadopoulou, A., Green, R. J., & Frazier, R. A. (2005). Interaction of flavonoids with bovine serum albumin: A fluorescence quenching study. Journal of Agricultural and Food Chemistry, 53(1), 158–163. doi:10.1021/jf048693g
  • Peters, Jr., T. (1996). All about albumin: Biochemistry, genetics and medical applications. San Diego, CA: Academic Press.
  • Pettersen, E. F., Goddard, T. D., Huang, C. C., Couch, G. S., Greenblatt, D. M., Meng, E. C., & Ferrin, T. E. (2004). UCSF chimera – A visualization system for exploratory research and analysis. Journal of Computational Chemistry, 25(13), 1605–1612. doi:10.1002/jcc.20084
  • Ramakrishnan, G., Chandra, N., & Srinivasan, N. (2017). Exploring anti-malarial potential of FDA approved drugs: An in silico approach. Malaria Journal, 16(1), 290. doi:10.1186/s12936-017-1937-2
  • Ross, P. D., & Subramanian, S. (1981). Thermodynamics of protein association reactions – Forces contributing to stability. Biochemistry, 20(11), 3096–3102. doi:10.1021/bi00514a017
  • Sapi, E., Pabbati, N., Datar, A., Davies, E. M., Rattelle, A., & Kuo, B. A. (2013). Improved culture conditions for the growth and detection of Borrelia from human serum. International Journal of Medical Sciences, 10(4), 362–376. doi:10.7150/ijms.5698
  • Sekowski, S., Bitiucki, M., Ionov, M., Zdeb, M., Abdulladjanova, N., Rakhimov, R., … Zamaraeva, M. (2018). Influence of valoneoyl groups on the interactions between Euphorbia tannins and human serum albumin. Journal of Luminescence, 194, 170–178. doi:10.1016/j.jlumin.2017.10.033
  • Shahabadi, N., Amiri, S., & Taherpour, A. (2019). Human serum albumin binding studies of a new platinum(IV) complex containing the drug pregabalin: Experimental and computational methods. Journal of Coordination Chemistry, 72(4), 600–618. doi:10.1080/00958972.2019.1568419
  • Shahabadi, N., Fili, S. M., & Kashanian, S. (2018). Human serum albumin interaction studies of a new copper(II) complex containing ceftobiprole drug using molecular modeling and multispectroscopic methods. Journal of Coordination Chemistry, 71(2), 329–341. doi:10.1080/00958972.2018.1428801
  • Shahri, P. A., Rad, A. S., Beigoli, S., Saberi, M. R., & Chamani, J. (2018). Human serum albumin-amlodipine binding studied by multi-spectroscopic, zeta-potential, and molecular modeling techniques. Journal of the Iranian Chemical Society, 15(1), 223–243. doi:10.1007/s13738-017-1226-6
  • Shi, J. H., Pan, D. Q., Wang, X. X., Liu, T. T., Jiang, M., & Wang, Q. (2016). Characterizing the binding interaction between antimalarial artemether (AMT) and bovine serum albumin (BSA): Spectroscopic and molecular docking methods. Journal of Photochemistry and Photobiology B: Biology, 162, 14–23. doi:10.1016/j.jphotobiol.2016.06.025
  • Shi, S., Liu, J., Joshi, S. B., Krasnoperov, V., Gill, P., Middaugh, C. R., & Volkin, D. B. (2012). Biophysical characterization and stabilization of the recombinant albumin fusion protein sEphB4-HSA. Journal of Pharmaceutical Sciences, 101(6), 1969–1984. doi:10.1002/jps.23096
  • Shrake, A., & Ross, P. D. (1990). Ligand-induced biphasic protein denaturation. Journal of Biological Chemistry, 265(9), 5055–5059 [PMC][2318882]
  • Singh, S. K., & Kishore, N. (2008). Calorimetric and spectroscopic studies on the interaction of methimazole with bovine serum albumin. Journal of Pharmaceutical Sciences, 97(6), 2362–2372. doi:10.1002/jps.21140
  • Sliwinska-Hill, U., & Wiglusz, K. (2019). Multispectroscopic studies of the interaction of folic acid with glycated human serum albumin. Journal of Biomolecular Structure and Dynamics, 37(14), 3731–3739. doi:10.1080/07391102.2018.1526713
  • Stringer, T., Wiesner, L., & Smith, G. S. (2019). Ferroquine-derived polyamines that target resistant Plasmodium falciparum. European Journal of Medicinal Chemistry, 179, 78–83. doi:10.1016/j.ejmech.2019.06.023
  • Sudlow, G., Birkett, D., & Wade, D. (1975). The characterization of two specific drug binding sites on human serum albumin. Molecular Pharmacology, 11(6), 824–832
  • Sun, Y. F., Wu, H., Zhao, G. Q., & Shi, Y. (2015). Binding of amifostine to human serum albumin: A biophysical study. Luminescence, 30(1), 79–85. doi:10.1002/bio.2693
  • Tanaka, M., Asahi, Y., & Masuda, S. (1995). Interaction between drugs and water-soluble polymers. VII. Binding of berberine with bovine serum-albumin. Journal of Macromolecular Science, Part A Pure and Applied Chemistry, 32(2), 339–347. doi:10.1080/10601329508011166
  • Tanford, C. (1978). The hydrophobic effect and the organization of living matter. Science, 200(4345), 1012–1018. doi:10.1126/science.653353
  • Tang, B., Tang, P. X., He, J. W., Yang, H. Q., & Li, H. (2018). Characterization of the binding of a novel antitumor drug ibrutinib with human serum albumin: Insights from spectroscopic, calorimetric and docking studies. Journal of Photochemistry and Photobiology B: Biology, 184, 18–26. doi:10.1016/j.jphotobiol.2018.05.008
  • Tang, J. H., Luan, F., & Chen, X. G. (2006). Binding analysis of glycyrrhetinic acid to human serum albumin: Fluorescence spectroscopy, FTIR, and molecular modeling. Bioorganic & Medicinal Chemistry, 14(9), 3210–3217. doi:10.1016/j.bmc.2005.12.034
  • Tangpukdee, N., Duangdee, C., Wilairatana, P., & Krudsood, S. (2009). Malaria diagnosis: A brief review. The Korean Journal of Parasitology, 47(2), 93. doi:10.3347/kjp.2009.47.2.93
  • Tayyab, S., Francis, J. A., Kabir, M. Z., Ghani, H., & Mohamad, S. B. (2019). Probing the interaction of 2,4-dichlorophenoxyacetic acid with human serum albumin as studied by experimental and computational approaches. Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy, 207, 284–293. doi:10.1016/j.saa.2018.09.033
  • Tayyab, S., Izzudin, M. M., Kabir, M. Z., Feroz, S. R., Tee, W. V., Mohamad, S. B., & Alias, Z. (2016). Binding of an anticancer drug, axitinib to human serum albumin: Fluorescence quenching and molecular docking study. Journal of Photochemistry and Photobiology B: Biology, 162, 386–394. doi:10.1016/j.jphotobiol.2016.06.049
  • Tayyab, S., Sam, S. E., Kabir, M. Z., Ridzwan, N. F. W., & Mohamad, S. B. (2019). Molecular interaction study of an anticancer drug, ponatinib with human serum albumin using spectroscopic and molecular docking methods. Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy, 214, 199–206. doi:10.1016/j.saa.2019.02.028
  • Tramarin, A., Tedesco, D., Naldi, M., Baldassarre, M., Bertucci, C., & Bartolini, M. (2019). New insights into the altered binding capacity of pharmaceutical-grade human serum albumin: Site-specific binding studies by induced circular dichroism spectroscopy. Journal of Pharmaceutical and Biomedical Analysis, 162, 171–178. doi:10.1016/j.jpba.2018.09.022
  • Tunc, S., Cetinkaya, A., & Duman, O. (2013). Spectroscopic investigations of the interactions of tramadol hydrochloride and 5-azacytidine drugs with human serum albumin and human hemoglobin proteins. Journal of Photochemistry and Photobiology B: Biology, 120, 59–65. doi:10.1016/j.jphotobiol.2013.01.011
  • Tunc, S., Duman, O., & Bozoglan, B. K. (2013). Studies on the interactions of chloroquine diphosphate and phenelzine sulfate drugs with human serum albumin and human hemoglobin proteins by spectroscopic techniques. Journal of Luminescence, 140, 87–94. doi:10.1016/j.jlumin.2013.03.015
  • Tunc, S., Duman, O., Soylu, I., & Bozoglan, B. K. (2014a). Spectroscopic investigation of the interactions of carbofuran and amitrol herbicides with human serum albumin. Journal of Luminescence, 151, 22–28. doi:10.1016/j.jlumin.2014.02.004
  • Tunc, S., Duman, O., Soylu, I., & Bozoglan, B. K. (2014b). Study on the bindings of dichlorprop and diquat dibromide herbicides to human serum albumin by spectroscopic methods. Journal of Hazardous Materials, 273, 36–43. doi:10.1016/j.jhazmat.2014.03.022
  • Wang, Y., Liu, J., Zhu, M., Wang, L., Zen, X., Fan, S., … Li, Q. X. (2018). Biophysical characterization of interactions between falcarinol-type polyacetylenes and human serum albumin via multispectroscopy and molecular docking techniques. Journal of Luminescence, 200, 111–119. doi:10.1016/j.jlumin.2018.03.082
  • Wang, Y., Wang, L. J., Zhu, M. Q., Xue, J. Y., Hua, R. M., & Li, Q. X. (2019). Comparative studies on biophysical interactions between gambogic acid and serum albumin via multispectroscopic approaches and molecular docking. Journal of Luminescence, 205, 210–218. doi:10.1016/j.jlumin.2018.09.005
  • Warncke, J. D., & Beck, H. P. (2019). Host cytoskeleton remodeling throughout the blood stages of Plasmodium falciparum. Microbiology and Molecular Biology Reviews, 83(4), e00013-19. doi:10.1128/MMBR.00013-19
  • WHO. (2015). Guidelines for the treatment of malaria. Geneva: Switzerland.
  • Xiong, X., Gan, R., Suo, Z., Tang, P., Zhang, S., Zhu, Y., … Li, H. (2018). Interactions between the antiviral drug telaprevir and human serum albumin: A combined study with spectroscopic methods and molecular modeling. New Journal of Chemistry, 42(12), 9791–9800. doi:10.1039/C8NJ00655E
  • Xiong, X. N., He, J. W., Yang, H. Q., Tang, P. X., Tang, B., Sun, Q. M., & Li, H. (2017). Investigation on the interaction of antibacterial drug moxifloxacin hydrochloride with human serum albumin using multi-spectroscopic approaches, molecular docking and dynamical simulation. RSC Advances, 7(77), 48942–48951. doi:10.1039/C7RA08731D
  • Yu, M. R., Ding, Z. S., Jiang, F. S., Ding, X. H., Sun, J. Y., Chen, S. H., & Lv, G. Y. (2011). Analysis of binding interaction between pegylated puerarin and bovine serum albumin by spectroscopic methods and dynamic light scattering. Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy, 83(1), 453–460. doi:10.1016/j.saa.2011.08.065
  • Zsila, F. (2013). Subdomain IB is the third major drug binding region of human serum albumin: Toward the three-sites model. Molecular Pharmaceutics, 10(5), 1668–1682. doi:10.1021/mp400027q

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.