223
Views
8
CrossRef citations to date
0
Altmetric
Research Articles

In silico identification of hydantoin derivatives: a novel natural prolyl hydroxylase inhibitor

, , &
Pages 703-717 | Received 20 Mar 2019, Accepted 03 Jan 2020, Published online: 25 Jan 2020

References

  • An, Y., Sherman, W., & Dixon, S. L. (2013). Kernel-based partial least squares: Application to fingerprint-based QSAR with model visualization. Journal of Chemical Information and Modeling, 53(9), 2312–2321. doi:10.1021/ci400250c
  • Ashok, B. S., Ajith, T. A., & Sivanesan, S. (2017). Hypoxia-inducible factors as neuroprotective agent in Alzheimer’s disease. Clinical and Experimental Pharmacology and Physiology, 44(3), 327–334. doi:10.1111/1440-1681.12717
  • Baig, A. M. (2019). Connecting the dots: Linking the biochemical to morphological transitions in Alzheimer’s disease. ACS Chemical Neuroscience, 10(1), 21–24. doi:10.1021/acschemneuro.8b00409
  • Balupuri, A., Balasubramanian, P. K., & Cho, S. J. (2020). 3D-QSAR, docking, molecular dynamics simulation and free energy calculation studies of some pyrimidine derivatives as novel JAK3 inhibitors. Arabian Journal of Chemistry, 13(1), 1052–1078. doi:10.1016/j.arabjc.2017.09.009
  • Berra, E., Benizri, E., Ginouvès, A., Volmat, V., Roux, D., & Pouysségur, J. (2003). HIF prolyl-hydroxylase 2 is the key oxygen sensor setting low steady-state levels of HIF-1α in normoxia. EMBO Journal, 22(16), 4082–4090. doi:10.1093/emboj/cdg39
  • Cummings, J., Lee, G., Mortsdorf, T., Ritter, A., & Zhong, K. (2017). Alzheimer’s disease drug development pipeline: 2017. Alzheimer’s & Dementia (New York, N. Y.), 3(3), 367–384. doi:10.1016/j.trci.2017.05.002
  • de Oliveira, M. T., & Katekawa, E. (2018). On the virtues of automated quantitative structure–activity relationship: The new kid on the block. Future Medicinal Chemistry, 10(3), 335–342. doi:10.4155/fmc-2017-0170
  • de Souza, A. S., de Oliveira, M. T., & Andricopulo, A. D. (2017). Development of a pharmacophore for cruzain using oxadiazoles as virtual molecular probes: Quantitative structure–activity relationship studies. Journal of Computer-Aided Molecular Design, 31(9), 801–816. doi:10.1007/s10822-017-0039-0
  • Dixon, S. L., Duan, J., Smith, E., Von Bargen, C. D., Sherman, W., & Repasky, M. P. (2016). AutoQSAR: An automated machine learning tool for best-practice quantitative structure–activity relationship modeling. Future Medicinal Chemistry, 8(15), 1825–1839. doi:10.4155/fmc-2016-0093
  • Ellison, C. M., Sherhod, R., Cronin, M. T. D., Enoch, S. J., Madden, J. C., & Judson, P. N. (2011). Assessment of methods to define the applicability domain of structural alert models. Journal of Chemical Information and Modeling, 51(5), 975–985. doi:10.1021/ci1000967
  • Eslavath, R. K., Sharma, D., Bin Omar, N. A. M., Chikati, R., Teli, M. K., Rajanikant, G. K., & Singh, S. S. (2016). β-N-oxalyl-L-α, β- diaminopropionic acid induces HRE expression by inhibiting HIF-prolyl hydroxylase-2 in normoxic conditions. European Journal of Pharmacology, 791, 405–411. doi:10.1016/j.ejphar.2016.07.007
  • Fan, N., Zhang, S., Sheng, T., Zhao, L., Liu, Z., Liu, J., & Wang, X. (2018). Docking field-based QSAR and pharmacophore studies on the substituted pyrimidine derivatives targeting HIV-1 reverse transcriptase. Chemical Biology & Drug Design, 91(2), 398–407. doi:10.1111/cbdd.13086
  • Friesner, R. A., Murphy, R. B., Repasky, M. P., Frye, L. L., Greenwood, J. R., Halgren, T. A., … Mainz, D. T. (2006). Extra precision glide: Docking and scoring incorporating a model of hydrophobic enclosure for protein − ligand complexes. Journal of Medicinal Chemistry, 49(21), 6177–6196. doi:10.1021/jm051256o
  • Gadhe, C. G., Lee, E., & Kim, M. (2015). Finding new scaffolds of JAK3 inhibitors in public database: 3D-QSAR models & shape-based screening. Archives of Pharmacal Research, 38(11), 2008–2019. doi:10.1007/s12272-015-0607-6
  • Gruneberg, D., Montellano, F. A., Plaschke, K., Li, L., Marti, H. H., & Kunze, R. (2016). Neuronal prolyl-4-hydroxylase 2 deficiency improves cognitive abilities in a murine model of cerebral hypoperfusion. Experimental Neurology, 286, 93–106. doi:10.1016/j.expneurol.2016.10.001
  • Harder, E., Damm, W., Maple, J., Wu, C., Reboul, M., Xiang, J. Y., … Friesner, R. A. (2016). OPLS3: A force field providing broad coverage of drug-like small molecules and proteins. Journal of Chemical Theory and Computation, 12(1), 281–296. doi:10.1021/acs.jctc.5b00864
  • Jaworska, J., & Nikolova-Jeliazkova, N. (2007). How can structural similarity analysis help in category formation? SAR and QSAR in Environmental Research, 18(3–4), 195–207. doi:10.1080/10629360701306050
  • Joharapurkar, A. A., Pandya, V. B., Patel, V. J., Desai, R. C., & Jain, M. R. (2018). Prolyl hydroxylase inhibitors: A breakthrough in the therapy of anemia associated with chronic diseases. Journal of Medicinal Chemistry, 61(16), 6964–6982. doi:10.1021/acs.jmedchem.7b01686
  • Katari, S. K., Natarajan, P., Swargam, S., Kanipakam, H., Pasala, C., & Umamaheswari, A. (2016). Inhibitor design against JNK1 through e-pharmacophore modeling docking and molecular dynamics simulations. Journal of Receptors and Signal Transduction, 36(6), 558–571. doi:10.3109/10799893.2016.1141955
  • Kim, H., Jang, C., Yadav, D. K., & Kim, M. (2017). The comparison of automated clustering algorithms for resampling representative conformer ensembles with RMSD matrix. Journal of Cheminformatics, 9(1), 21. doi:10.1186/s13321-017-0208-0
  • Kim, M., Lee, J., Jung, K., Kim, M., Park, Y.-J., Ahn, H., … Hah, J.-M. (2013). Syntheses and biological evaluation of 1-heteroaryl-2-aryl-1H-benzimidazole derivatives as c-Jun N-terminal kinase inhibitors with neuroprotective effects. Bioorganic & Medicinal Chemistry, 21(8), 2271–2285. doi:10.1016/j.bmc.2013.02.021
  • Kim, M., Ryu, J.-S., & Hah, J.-M. (2013). 3D-QSAR studies of 1,2-diaryl-1H-benzimidazole derivatives as JNK3 inhibitors with protective effects in neuronal cells. Bioorganic & Medicinal Chemistry Letters, 23(6), 1639–1642. doi:10.1016/j.bmcl.2013.01.082
  • Kivirikko, K. I., & Myllylä, R. (1982). Posttranslational enzymes in the biosynthesis of collagen: Intracellular enzymes. Methods in Enzymology, 82(pt A), 245–304. doi:10.1016/0076-6879(82)82067-3
  • Kolarević, A., Ilić, B. S., Anastassova, N., Mavrova, A. T., Yancheva, D., Kocić, G., & Šmelcerović, A. (2018). Benzimidazoles as novel deoxyribonuclease I inhibitors. Journal of Cellular Biochemistry, 119(11), 8937–8948. doi:10.1002/jcb.27147
  • Lee, J., Cho, S., Kim, M., Lee, J. H., Cho, S. J., & Kim, M. (2018). Discovery of CNS-like D3R-selective antagonists using 3D pharmacophore guided virtual screening. Molecules, 23(10), 2452. doi:10.3390/molecules23102452
  • National Center for Biotechnology Information. (n.d.). PubChem BioAssay Database; AID = 1258436. Bethesda, MD: National Center for Biotechnology Information. Retrieved from https://pubchem.ncbi.nlm.nih.gov/bioassay/1258436#section=Top
  • Ng, D., Arend, M. P., & Lee, A. F. (2016). U.S. Patent No. 8921389B2. Retrieved from https://patents.google.com/patent/US9695170/zh-TW
  • Niatsetskaya, Z., Basso, M., Speer, R. E., McConoughey, S. J., Coppola, G., Ma, T. C., & Ratan, R. R. (2010). HIF prolyl hydroxylase inhibitors prevent neuronal death induced by mitochondrial toxins: Therapeutic implications for Huntington’s disease and Alzheimer’s disease. Antioxidants & Redox Signaling, 12(4), 435–443. doi:10.1089/ars.2009.2800
  • Parsons, C. G. (2019). CNS repurposing – Potential new uses for old drugs: Examples of screens for Alzheimer’s disease, Parkinson’s disease and spasticity. Neuropharmacology, 147, 4–10. doi:10.1016/j.neuropharm.2018.08.027
  • Piemontese, L., Tomás, D., Hiremathad, A., Capriati, V., Candeias, E., Cardoso, S. M., … Santos, M. A. (2018). Donepezil structure-based hybrids as potential multifunctional anti-Alzheimer’s drug candidates. Journal of Enzyme Inhibition and Medicinal Chemistry, 33(1), 1212–1224. doi:10.1080/14756366.2018.1491564
  • Rabinowitz, M. H. (2013). Inhibition of hypoxia-inducible factor prolyl hydroxylase domain oxygen sensors: Tricking the body into mounting orchestrated survival and repair responses. Journal of Medicinal Chemistry, 56(23), 9369–9402. doi:10.1021/jm400386j
  • Rohini, K., & Shanthi, V. (2018). Hyphenated 3D-QSAR statistical model-drug repurposing analysis for the identification of potent neuraminidase inhibitor. Cell Biochemistry and Biophysics, 76(3), 357–376. doi:10.1007/s12013-018-0844-7
  • Sastry, G. M., Dixon, S. L., & Sherman, W. (2011). Rapid shape-based ligand alignment and virtual screening method based on atom/feature-pair similarities and volume overlap scoring. Journal of Chemical Information and Modeling, 51(10), 2455–2466. doi:10.1021/ci2002704
  • Sen, D., Majumder, A., Arora, V., Yadu, N., & Chakrabarti, R. (2017). Taming Alzheimer’s disease: New perspectives, newer horizons. Iranian Journal of Neurology, 16(3), 146–155.
  • Shekhar Mishra, S., Venkatachalam, T., Shekhar Sharma, C., Pratap Singh, H., Kalra, S., & Kumar, N. (2019). Computational investigation of binding mechanism of substituted pyrazinones targeting corticotropin releasing factor-1 receptor deliberated for anti-depressant drug design. Journal of Biomolecular Structure and Dynamics, 37(12), 3226–3244. doi:10.1080/07391102.2018.1513379
  • Teli, M. K., & Krishnamurthy, R. G. (2013). A combination of 3D-QSAR modeling and molecular docking approach for the discovery of potential HIF prolyl hydroxylase inhibitors. Medicinal Chemistry (Shariqah (United Arab Emirates)), 9(3), 360–370.
  • Teli, M. K., & Rajanikant, G. K. (2012a). Identification of novel potential HIF-prolyl hydroxylase inhibitors by in silico screening. Molecular Diversity, 16(1), 193–202. doi:10.1007/s11030-011-9338-x
  • Teli, M. K., & Rajanikant, G. K. (2012b). Pharmacophore generation and atom-based 3D-QSAR of novel quinoline-3-carbonitrile derivatives as Tpl2 kinase inhibitors. Journal of Enzyme Inhibition and Medicinal Chemistry, 27(4), 558–570. doi:10.3109/14756366.2011.603128
  • Teli, M. K., & Rajanikant, G. K. (2012c). Pharmacophore generation and atom-based 3D-QSAR of N-iso-propyl pyrrole-based derivatives as HMG-CoA reductase inhibitors. Organic and Medicinal Chemistry Letters, 2(1), 25. doi:10.1186/2191-2858-2-25
  • Teli, M. K., & Rajanikant, G. K. (2013). Computational repositioning and experimental validation of approved drugs for HIF-prolyl hydroxylase inhibition. Journal of Chemical Information and Modeling, 53(7), 1818–1824. doi:10.1021/ci400254a
  • Tong, J., Zhan, P., Wang, X. S., & Wu, Y. (2017). Quionolone carboxylic acid derivatives as HIV-1 integrase inhibitors: Docking-based HQSAR and topomer CoMFA analyses. Journal of Chemometrics, 31(12), e2934. doi:10.1002/cem.2934
  • Wimo, A., Guerchet, M., Ali, G.-C., Wu, Y.-T., Prina, A. M., Winblad, B., … Prince, M. (2017). The worldwide costs of dementia 2015 and comparisons with 2010. Alzheimer’s & Dementia, 13(1), 1–7. doi:10.1016/j.jalz.2016.07.150
  • Yadav, D. K., Kumar, S., Saloni, Misra, S., Yadav, L., Teli, M., … Kim, M.-H. (2018). Molecular insights into the interaction of RONS and thieno[3,2-c]pyran analogs with SIRT6/COX-2: A molecular dynamics study. Scientific Reports, 8(1), 4777. doi:10.1038/s41598-018-22972-9

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.