120
Views
1
CrossRef citations to date
0
Altmetric
Research Articles

Prediction of the inhibitory concentrations of chloroquine derivatives using deep neural networks models

, , , &
Pages 672-680 | Received 07 Apr 2019, Accepted 02 Jan 2020, Published online: 25 Jan 2020

References

  • Aguiar, A. C. C., Panciera, M., Simão dos Santos, E. F., Singh, M. K., Garcia, M. L., de Souza, G. E., … Guido, R. V. C. (2018). Discovery of Marinoquinolines as potent and fast-acting plasmodium falciparum inhibitors with in vivo activity. Journal of Medicinal Chemistry, 61(13), 5547–5568.
  • Alibakshi, A. (2018). Strategies to develop robust neural network models: Prediction of flash point as a case study. Analytica Chimica Acta, 1026, 69–76.
  • Chairez, I., Fuentes, R., Poznyak, A., Poznyak, T., Escudero, M., & Viana, L. (2012). DNN-state identification of 2D distributed parameter systems. International Journal of Systems Science, 43(2), 296–307.
  • Chauhan, K., Sharma, M., Saxena, J., Singh, S. V., Trivedi, P., Srivastava, K., … Chauhan, P. M. S. (2013). Synthesis and biological evaluation of a new class of 4-aminoquinoline–rhodanine hybrid as potent anti-infective agents. European Journal of Medicinal Chemistry, 62, 693–704.
  • Commons, R. J., Simpson, J. A., Thriemer, K., Humphreys, G. S., Abreha, T., Alemu, S. G., … Price, R. N. (2018). The effect of chloroquine dose and primaquine on Plasmodium vivax recurrence: A WorldWide Antimalarial Resistance Network systematic review and individual patient pooled meta-analysis. The Lancet Infectious Diseases, 18(9), 1025–1034.
  • Cui, W. (2007). Investigation on process parameters of electrospinning system through orthogonal experimental design. Journal of Applied Polymer Science, 103(5):3105–3112.
  • Fang, K.-T., Lin, D. K. J., Winker, P., & Zhang, Y. (2000). Uniform design: Theory and application. Technometrics, 42(3), 237–248.
  • Fujita, T., & Winkler, D. A. (2016). Understanding the roles of the “Two QSARs. Journal of Chemical Information and Modeling, 56(2), 269–274.
  • Gayam, V., & Ravi, S. (2017). Cinnamoylated chloroquine analogues: A new structural class of antimalarial agents. European Journal of Medicinal Chemistry, 135, 382–391.
  • Hay, S. I., Rogers, D. J., Randolph, S. E., Stern, D. I., Cox, J., Shanks, G. D., & Snow, R. W. (2002). Hot topic or hot air? Climate change and malaria resurgence in East African highlands. Trends in Parasitology, 18(12), 530–534.
  • Jackson, D. L. (2003). Revisiting sample size and number of parameter estimates: Some support for the N:Q Hypothesis. Structural Equation Modeling: A Multidisciplinary Journal, 10(1), 128–141.
  • Joshi, M. C., Okombo, J., Nsumiwa, S., Ndove, J., Taylor, D., Wiesner, L., … Egan, T. J. (2017). 4-Aminoquinoline antimalarials containing a benzylmethylpyridylmethylamine group are active against drug resistant plasmodium falciparum and exhibit oral activity in mice. Journal of Medicinal Chemistry, 60(24), 10245–10256.
  • Katritzky, A. R., Kulshyn, O. V., Stoyanova-Slavova, I., Dobchev, D. A., Kuanar, M., Fara, D. C., & Karelson, M. (2006). Antimalarial activity: A QSAR modeling using CODESSA PRO software. Bioorganic & Medicinal Chemistry, 14(7), 2333–2357. doi:10.1016/j.bmc.2005.11.015
  • Kondaparla, S. (2017). Design, synthesis and in vitro antiplasmodial activity of some bisquinolines against chloroquine-resistant strain. Chemical Biology & Drug Design, 89(6):901–906.
  • Kondaparla, S., Soni, A., Manhas, A., Srivastava, K., Puri, S. K., & Katti, S. B. (2016). Synthesis and antimalarial activity of new 4-aminoquinolines active against drug resistant strains. RSC Advances, 6(107), 105676–105689.
  • Kondaparla, S., Soni, A., Manhas, A., Srivastava, K., Puri, S. K., & Katti, S. B. (2017). Antimalarial activity of novel 4-aminoquinolines active against drug resistant strains. Bioorganic Chemistry, 70, 74–85.
  • Lawrenson, A. S., Cooper, D. L., O’Neill, P. M., & Berry, N. G. (2018). Study of the antimalarial activity of 4-aminoquinoline compounds against chloroquine-sensitive and chloroquine-resistant parasite strains. Journal of Molecular Modeling, 24(9), 237.
  • Ma, J., Sheridan, R. P., Liaw, A., Dahl, G. E., & Svetnik, V. (2015). Deep neural nets as a method for quantitative structure–activity relationships. Journal of Chemical Information and Modeling, 55(2), 263–274. doi:10.1021/ci500747n
  • Nozaki, K., Ishibuchi, H., & Tanaka, H. (1997). A simple but powerful heuristic method for generating fuzzy rules from numerical data. Fuzzy Sets and Systems, 86(3), 251–270.
  • Pandey, S., Agarwal, P., Srivastava, K., RajaKumar, S., Puri, S. K., Verma, P., … Chauhan, P. M. S. (2013). Synthesis and bioevaluation of novel 4-aminoquinoline-tetrazole derivatives as potent antimalarial agents. European Journal of Medicinal Chemistry, 66, 69–81.
  • Parthiban, A., Muthukumaran, J., Manhas, A., Srivastava, K., Krishna, R., & Rao, H. S. P. (2015). Synthesis, in vitro and in silico antimalarial activity of 7-chloroquinoline and 4H-chromene conjugates. Bioorganic & Medicinal Chemistry Letters, 25(20), 4657–4663. doi:10.1016/j.bmcl.2015.08.030
  • Patel, S. K., Khedkar, V. M., Jha, P. C., Jasrai, Y. T., Pandya, H. A., George, L.-B., … Skelton, A. A. (2016). Molecular interaction of selected phytochemicals under the charged environment of Plasmodium falciparum chloroquine resistance transporter (PfCRT) model. Journal of Biomolecular Structure and Dynamics, 34(2), 290–303.
  • Richards, S. N., Nash, M. N., Baker, E. S., Webster, M. W., Lehane, A. M., Shafik, S. H., & Martin, R. E. (2016). Molecular mechanisms for drug hypersensitivity induced by the Malaria Parasite’s chloroquine resistance transporter. PLOS Pathogens, 12(7), e1005725.
  • Sahu, N. K., Sharma, M. C., Mourya, V., & Kohli, D. V. (2014). QSAR studies of some side chain modified 7-chloro-4-aminoquinolines as antimalarial agents. Arabian Journal of Chemistry, 7(5), 701–707.
  • Sashidhara, K. V., Avula, S. R., Palnati, G. R., Singh, S. V., Srivastava, K., Puri, S. K., & Saxena, J. K. (2012). Synthesis and in vitro evaluation of new chloroquine-chalcone hybrids against chloroquine-resistant strain of Plasmodium falciparum. Bioorganic & Medicinal Chemistry Letters, 22(17), 5455–5459. doi:10.1016/j.bmcl.2012.07.028
  • Sharma, M., Chauhan, K., Chauhan, S. S., Kumar, A., Singh, S. V., Saxena, J. K., … Chauhan, P. M. S. (2012). Synthesis of hybrid 4-anilinoquinoline triazines as potent antimalarial agents, their in silico modeling and bioevaluation as Plasmodium falciparumtransketolase and β-hematin inhibitors. MedChemComm, 3(1), 71–79.
  • Sharma, M. (2014). Design and synthesis of a new class of 4-aminoquinolinyl- and 9-anilinoacridinyl schiff base hydrazones as potent antimalarial agents. Chemical Biology & Drug Design, 84(2):175–181.
  • Singh, K., Kaur, H., Chibale, K., Balzarini, J., Little, S., & Bharatam, P. V. (2012). 2-Aminopyrimidine based 4-aminoquinoline anti-plasmodial agents. Synthesis, biological activity, structure–activity relationship and mode of action studies. European Journal of Medicinal Chemistry, 52, 82–97.
  • Srinivasarao, K., Agarwal, P., Srivastava, K., Haq, W., Puri, S. K., & Katti, S. B. (2016). Design, synthesis, and in vitro antiplasmodial activity of 4-aminoquinolines containing modified amino acid conjugates. Medicinal Chemistry Research, 25(6), 1148–1162.
  • Tang, W., Chen, J., Wang, Z., Xie, H., & Hong, H. (2018). Deep learning for predicting toxicity of chemicals: A mini review. Journal of Environmental Science and Health, Part C, 36(4), 252–271.
  • WHO. (2017). World malaria report 2017. Geneva, Switzerland: WHO.
  • Wu, K., & Wei, G.-W. (2018). Quantitative toxicity prediction using topology based multitask deep neural networks. Journal of Chemical Information and Modeling, 58(2), 520–531.
  • Yvette, O. M., Malan, S. F., Taylor, D., Kapp, E., & Joubert, J. (2018). Adamantane amine-linked chloroquinoline derivatives as chloroquine resistance modulating agents in Plasmodium falciparum. Bioorganic & Medicinal Chemistry Letters, 28(8), 1287–1291. doi:10.1016/j.bmcl.2018.03.026

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.