347
Views
4
CrossRef citations to date
0
Altmetric
Research Articles

Light-induced effects in glycine aqueous solution studied by Fourier transform infrared-emission spectroscopy and ultraviolet-visible spectroscopy

ORCID Icon, ORCID Icon & ORCID Icon
Pages 108-117 | Received 13 Aug 2019, Accepted 09 Dec 2019, Published online: 25 Jan 2020

References

  • Ashkin, A. (1970). Atomic-beam deflection by resonance-radiation pressure. Physical Review Letters, 25 (19), 1321–1324. doi:10.1103/PhysRevLett.25.1321
  • Askhar’yan, G. A. (1962). Effect of the gradient of a strong electromagnetic ray on electrons and atoms. Journal of Experimental and Theoretical Physics, 42 (6), 1567–1570. [(1962) Sov. Phys JETP 15 (6), 1008-1011 (Engl. Transl.)].
  • Balabin, R. M. (2010). The first step in glycine solvation: The glycine-water complex. The Journal of Physical Chemistry B, 114(46), 15075–15078. doi:10.1021/jp107539z
  • Barrow, G. M. (1958). Nature of amino acids in solvents of low dielectric. Journal of the American Chemical Society, 80(1), 86–88. doi:10.1021/ja01534a024
  • Boldyreva, E. V., Drebushchak, V. A., Drebushchak, T. N., Paukov, I. E., Kovalevskaya, Y. A., & Shutova, E. S. (2003). Polymorphysm of glycine. Thermodynamic aspects part I: Relative stability of the polymorphs. Journal of Thermal Analysis and Calorimetry, 73(2), 409–418. doi:10.1023/A:1025405508035
  • Boldyreva, E. V., Drebushchak, V. A., Drebushchak, T. N., Paukov, I. E., Kovalevskaya, Y. A., & Shutova, E. S. (2003). Polymorphysm of glycine. Thermodynamic aspects Part II: Polymorphys transitions. Journal of Thermal Analysis and Calorimetry, 73(2), 419–428. doi:10.1023/A:1025457524874
  • Boldyreva, E. (2008). Crystalline amino acids: A link between chemistry, materials science and biology, Boeyens. In J. C. A. Boyens & J. F. Ogilvie (Eds.), Models, mysteries and magic of molecules, Chapter 7, (pp. 167–192). Netherlands: Springer.
  • Briggs, W. R., Spudich, J. L. (Eds.). (2004). Handbook of Photosensory Receptors. Weinheim, Germany: Wiley-VCH, c. 2005.
  • Brown, R. D., Godfrey, P. D., Storey, J. W. V., & Bassez, M. P. (1978). Microwave spectrum and conformation of glycine. Journal of the Chemical Society, Chemical Communications, 13, 547–548. doi:10.1039/c39780000547
  • Cantor, C. R., & Schimmel, P. R. (1980). In: Biophysical Chemistry Part I: The Conformation of Biological macromolecules. New York: W.H. Freeman & Company, 41–53.
  • Chai, B.-H., Zheng, J.-M., Zhao, Q., & Pollack, G. H. (2008). Spectroscopic studies in aqueous solution. The Journal of Physical Chemistry A, 112 (11), 2242–2247. doi:10.1021/jp710105n
  • Chen, X., Luo, W., Ma, H., Peng, Q., Yuan, W. Z., & Zhang, Y. (2018). Prevalent intrinsic emission from nonaromatic aminoacids and poly(amino acids). Science China Chemistry, 61 (3), 351–359. doi:10.1007/s11426-017-9114-4
  • de Carvalho, M. F., Mosquera, R. A., & Rivelino, R. (2007). A density functional theory study of the hydrogen bond interactions in glycine dimers. Chemical Physics Letters, 445(4-6), 117–124. doi:10.1016/j.cplett.2007.07.077
  • DeBlase, F. J., & Compton, S. (1991). Infrared emission spectroscopy: A theoretical and experimental review. Applied Spectroscopy, 45 (4), 611–618. doi:10.1366/0003702914337029
  • Demchenko, A. P., & Sytnik, A. I. (1991). Solvent reorganization red-edge effect in intramolecular electron transfer. Proceedings of the National Academy of Sciences, 88(20), 9311–9314. doi:10.1073/pnas.88.20.9311
  • Demchenko, A. P. (2002). The red-edge effects: 30 years of exploration. Luminescence, 17(1), 19–42. doi:10.1002/bio.671
  • Derbel, N., Hernández, B., Pflüger, F., Liquier, J., Geinguenaud, F., Jaïdane, N., … Mahmoud Ghomi, M. (2007). Vibrational analysis of amino acids and short peptides in hydrated media. I. L-glycine and L-leucine. The Journal of Physical Chemistry B, 111 (6), 1470–1477. doi:10.1021/jp0633953
  • Diller, R. (2008). Primary reactions in retinal proteins. In M. Braun, P. Gilch, & W. Zinth (Eds.), Ultrashort laser pulses in biology and medicine (pp. 243–277). Berlin Heidelberg: Springer-Verlag. Part 10.
  • Dioumaev, A. K. (2001). Infrared methods for monitoring the protonation state of carboxylic amino acids in the photocycle of bacteriorhodopsin. Biochemistry (Moscow)), 66(11), 1269–1276. doi:10.1023/A:1013135419529.
  • Fisher, G., Cao, X., Cox, N., & Francis, M. (2005). The FTIR spectra of glycine and glycylglycine zwitterions isolated in alkali halide matrices. Chemical Physics, 313(1), 39–49. doi:10.1016/j.chemphys.2004.12.011
  • Freier, E., Wolf, S., & Gerwert, K. (2011). Proton transfer via a transient linear water-molecule chain in a membrane protein. Proceedings of the National Academy of Sciences, 108 (28), 11435–11439. doi:10.1073/pnas.1104735108
  • Gagarinov, A. G., Degtyareva, O. V., Khodonov, A. A., & Terpugov, E. L. (2006). Stimulated infrared emission all-trans retinal and wild-type bacteriorhodopsin under CW optical pumping: Studies by FT-IR spectroscopy. Vibrational Spectroscopy, 42 (2), 231–238. doi:10.1016/j.vibspec.2006.05.002
  • Garczarek, F., & Gerwert, K. (2006). Functional waters in intraprotein proton transfer monitored by FTIR-difference spectroscopy. Nature, 439(7072), 109–112. doi:10.1038/nature04231
  • Garetz, B. A., Aber, J. E., Goddard, N. L., Young, R. G., & Myerson, A. S. (1996). Nonphotochemical, polaziration-dependent, laser-induced nucleation in supersaturated aqueous urea-solutions. Physical Review Letters, 77 (16), 3475–3476. doi:10.1103/PhysRevLett.77.3475
  • Garetz, B. A., Matic, J., & Myerson, A. S. (2002). Polarization switching of crystal structure in the nonphotochemical light-induced nucleation of supersaturated aqueous glycine solutions. Physical Review Letters, 89, 175501-1-4. 10.1103/PhysRevLett.89.175501.
  • Gerwert, K., Freier, E., & Wolf, S. (2014). The role of protein-bound water molecules in microbial rhodopsins. Biochimica et Biophysica Acta (Bba) - Bioenergetics, 1837(5), 606–613. doi:10.1016/j.bbabio.2013.09.006
  • Grabowski, Z. R., Rotkiewicz, K., & Rettig, W. (2003). Structural changes accompanying intramolecular electron transfer: Focus on twisted intramolecular charge-transfer states and structures. Chemical Reviews, 103(10), 3899– 4032. doi:10.1021/cr940745l
  • Gupta, V. P., Gupta, V. D., & Mehrotra, C. (1981). Molecular polarizabilities of some amino acids 1. Glycine and L-alanine. Pramana, 16(5), 369–377. doi:10.1007/BF02848232
  • Guptasarma, P. (2008). Solution-state characteristics of the ultraviolet A-induced visible fluorescence from proteins. Archives of Biochemistry and Biophysics, 478 (2), 127–129. doi:10.1016/j.abb.2008.08.002
  • Hamad, S., Hughes, C. E., Catlow, C. R. A., & Harris, K. D. M. (2008). Clustering of glycine molecules in aqueous solution studied by molecular dynamics simulation. The Journal of Physical Chemistry B, 112 (24), 7280–7288. doi:10.1021/jp711271z
  • Hamad, S., & Catlow, C. R. A. (2011). Are glycine cyclic dimers stable in aqueous solution? CrystEngComm, 13 (13), 4391–4399. doi:10.1039/c0ce00877j
  • Homchaudhuri, L., & Swaminathan, R. (2001). Novel absorption and fluorescence characteristics of L-lysine. Chemistry Letters, 30(8), 844–845. doi:10.1246/cl.2001.844
  • Homchaudhuri, L., & Swaminathan, R. (2004). Near ultraviolet absorptiiom arising from lysine residues in close proximity: A probe to monitor protein unfolding and aggregation in lysine-rich proteins. Bulletin of the Chemical Society of Japan, 77(4), 763–769. doi:10.1246/bcsj.77.765
  • Hong, Y., Lam, J. W. Y., & Tang, B. Z. (2009). Aggregation-induced emission: Phenomenon, mechanism and applications. Chemical Communications, 29, 4332–4353. doi:10.1039/b904665h
  • Huang, J., Stringfellow, T. C., & Yu, L. (2008). Glycine exists mainly as monomers, not dimers, in supersaturated aqueous solutions: Implications for understanding its crystallization and polymorphism. Journal of the American Chemical Society, 130(42), 13973–13980. doi:10.1021/ja804836d
  • Huang, W., Wang, X., Yu, Z., & Zhang, Y. (1998). Research into keV N + irradiated glycine. Nuclear Instruments and Methods in Physics Research Section B: Beam Interactions with Materials and Atoms, 140 (3-4), 373–379. doi:10.1016/S0168-583X(98)00006-8
  • Iijima, K., Tanaka, K., & Onuma, S. (1991). Main conformer of gaseous glycine: Molecular structure and rotational barrier from electron diffraction data and rotational constants. Journal of Molecular Structure, 246 (3-4), 257–266. doi:10.1016/0022-2860(91)80132-N
  • Iitaka, Y. (1960). The crystal structure of β-glycine. Acta Crystallographica, 13 (1), 35–45. doi:10.1107/S0365110X60000066
  • Jensen, J. H., & Gordon, M. S. (1995). On the number of water molecules necessary to stabilize the glycine zwitterion. Journal of the American Chemical Society, 117(31), 8159–8170. doi:10.1021/ja00136a013
  • Józefowicz, M., & Heldt, J. R. (2011). Excitation-wavelength dependent fluorescence of ethyl 5-(4-aminophenyl)-3-amino-2,4-dicyanobenzoate. Journal of Fluorescence, 21(1), 239–245. doi:10.1007/s10895-010-0711-4
  • Kamariotis, A., Boyarkin, O. V., Mercier, S. R., Beck, R. D., Bush, M. F., Williams, E. R., & Rizzo, T. R. (2006). Infrared Spectroscopy of Hydrated Amino Acids in the Gas Phase: Protonated and Lithiated Valine. Journal of the American Chemical Society, 128 (3), 905–916. doi:10.1021/ja056079v
  • Kaneko, A., Inoue, K., Kojima, K., Kandori, H., & Sudo, Y. (2017). Conversion of microbial rhodopsins: Insights into functionally essential elements and rational protein engineering. Biophysical Reviews, 9 (6), 861–876. doi:10.1007/s12551-017-0335-x
  • Kayi, H., Kaiser, R. I., & Head, J. D. (2012). A theoretical investigation of the relative stability of hydrated glycine and methylcarbamic acid–from water clusters to interstellar ices. Physical Chemistry Chemical Physics, 14 (14), 4942–4958. doi:10.1039/c2cp23798a
  • Khanarian, G., & Moore, W. J. (1980). The Kerr effect of amino acids in water. Australian Journal of Chemistry, 33(8), 1727–1741. doi:10.1071/CH9801727
  • Lanyi, J. K. (2004). Bacteriorhodopsin. Annual Review of Physiology, 66 (1), 665–688. doi:10.1146/annurev.physiol.66.032102.150049
  • Latha, A. A., Anbuchezhiyan, M., Kanakam, C. C., & Selvarani, K. (2017). Synthesis and characterization of γ-glycine – A nonlinear optical single crystal for optoelectronic and photonic applications. Materials Science-Poland, 35(1), 140–150. doi:10.1515/msp-2017-0031
  • Luecke, H., Schobert, B., Richter, H. T., Cartailler, J. P., & Lanyi, J. K. (1999). Structure of bacteriorhodopsin at 1.55 angstrom resolution. Journal of Molecular Biology, 291(4), 899–911. doi:10.1006/jmbi.1999.3027
  • Ma, J., Pazos, I. M., Zhang, W., Culik, R. M., & Gai, F. (2015). Site-specific infrared probes of proteins. Annual Review of Physical Chemistry, 66 (1), 357–377. doi:10.1146/annurev-physchem-040214-121802
  • Mathies, R. A., Lin, S. W., Ames, J. B., & Pollard, W. T. (1991). From femtoseconds to biology: Mechanism of bacteriorhodopsin’s light-driven proton pump. Annual Review of Biophysics and Biophysical Chemistry, 1991, 20 (1), 491–518. doi:10.1146/annurev.bb.20.060191.002423
  • Max, J. J., Trudel, M., & Chapados, C. (1998). Infrared titration of aqueous glycine. Applied Spectroscopy, 52(2), 226–233. doi:10.1366/0003702981943284
  • McConnel, J. S., mcConnel, R. M., & Hossner, L. R. (1993). Ultraviolet spectra of acetic acid, glycine, and glyphosate. Journal of Arkansas Academy of Science, 47, 73–76.
  • McMahon, D. H., & Franklin, A. R. (1965). Nonlinear optical sum generation in ADP using only incoherent light. Journal of Applied Physics, 36 (6), 2073–2075. doi:10.1063/1.1714405
  • Millefiori, S., Alparone, A., Millefiori, A., & Vanella, A. (2008). Electronic and vibrational polarizabilities of the twenty naturally occurring amino acids. Biophysical Chemistry, 132(2-3), 139–147. doi:10.1016/j.bpc.2007.11.003
  • Nie, B., Stutzman, J., & Xie, A. (2005). A vibrational spectral maker for probing the hydrogen-bonding status of protonated Asp and Glu residues. Biophysical Journal., 88(4), 2833–2847. doi:10.1529/biophysj.104.047639
  • Niyangoda, C., Miti, T., Breydo, L., Uversky, V., & Muschol, M. (2017). Carbonyl-base blue autofluorescence of proteins and amino acids. PLoS One, 12 (5), e0176983.0176983. doi:10.1371/journal.pone.0176983
  • Parks, C., Koswara, A., Tung, H. H., Nere, N., Bordawekar, S., Nagy, Z. K., & Ramkrishna, D. (2018). Extending the crystal landscape through electric field controlled crystallization - A molecular dynamics case study. ChemRxiv. (Preprint). https://doi.org/10.26434/chemrxiv.7094564.v1
  • Parsons, M. T., & Koga, Y. (2005). Hydration number of glycine in aqueous solution: An experimental estimate. Journal of Chemical Physics, 12390, 234504. doi:10.1063/1/2138698
  • Pilling, S., Mendes, L. A., Bordalo, V., Guaman, C. F., Ponciano, C. R., & da Silveira, E. F. (2013). The influence of crystallinity degree on the glycine decomposition induced by 1 MeV proton bombardment in space analog conditions. Astrobiology, 13(1), 79–91. doi:10.1089/ast.2012.0877
  • Pinotsi, D., Grisanti, L., Mahou, P., Gebauer, R., Kaminski, C. F., Hassanali, A., & Kaminski Schierle, G. S. (2016). Proton transfer and structure-specific fluorescence in hydrogen bond-rich protein structures. Journal of the American Chemical Society, 138(9), 3046–3057. doi:10.1021/jacs.5b11012
  • Prasad, S., Mandal, I., Singh, S., Paul, A., Mandal, B., Venkatramani, R., & Swaminathan, R. (2017). Near UV-Visible electrpnic absorbtion originating from charged amino acids in a monomeric protein. Chemical Science, 8,5416–5433. doi:10.1039/C7SCOO88OE
  • Ramaekers, R., Pajak, J., Lambie, B., & Maes, G. (2004). Neutral and zwitterionic glycine H2O complexes: A theoretical and matrix-isolation Fourier transform infrared study. Journal of Chemical Physics, 120(9), 4182–4194. doi:10.1063/1.1643735
  • Rosado, M. T., Duarte, M. L. T. S., & Fausto, R. (1998). Vibrational spectra of acid and alkaline glycine salts. Vibrational Spectroscopy, 16 (1), 35–54. doi:10.1016/S0924-2031(97)00050-7
  • Scherbakov, K. A., Kondratiev, M. S., Samchenko, A. A., Kabanov, A. V., & Komarov, V. M. (2016). The electronic structure properties of 20 L-amino acids in neutral and zwitterion forms: Quantum-chemical calculations. Biophysics, 61(3), 361–372. doi:10.1134/S0006350916030167
  • Schobert, B., Brown, L. S., & Lanyi, J. K. (2003). Crystallographic structures of the M and N intermediates of bacteriorhodopsin: Assembly of a hydrogen-bonded chain of water molecules between Asp-96 and the retinal Schiff base. Journal of Molecular Biology, 330(3), 553–570. doi:10.1016/S0022-2836(03)00576-X
  • Shen, Y. R. (1984). The principles of nonlinear optics. New York: J. Willey & Sons.
  • Shukla, A., Mukherjee, S., Sharma, S., Agrawal, V., Radha Kishan, K. V., & Guptasarma, P. (2004). A novel UV laser-induced visible blue radiation from protein crystals and aggregates: Scattering artifacts or fluorescence transitions of peptide electrons delocalized through hydrogen bonding? Archives of Biochemistry and Biophysics, 428 (2), 144–153. doi:10.1016/j.abb.2004.05.007
  • Simon, S., Gil, A., Sodupe, M., & Bertrán, J. (2005). Structure and fragmentation of glycine, alanine, serine and cysteine radical cations. A theoretical study. Journal of Molecular Structure: Theochem, 727 (1-3), 191–197. doi:10.1016/j.theochem.2005.02.053
  • Stepanian, S. G., Reva, I. D., Radchenko, E. D., Rosado, M. T. S., Duarte, M. L. T. S., Fausto, R., & Adamowicz, L. (1998). Matrix-matrix-isolation infrared and theoretical studies of the glycine conformers. The Journal of Physical Chemistry A, 102 (6), 1041–1054. doi:10.1021/jp973397a
  • Suzuki, S., Shimanouchi, T., & Tsuboi, M. (1963). Normal vibrations of glycine and deuterated glycine molecules. Spectrochimica Acta, 19(7), 1195–1208. doi:10.1016/0371-1951(63)80040-5
  • Takeda, M., Iavazzo, R. E. S., Garfinkel, D., Scheinberg, I. H., & Edsall, J. T. (1958). Raman spectra of amino acids and related compounds. IX. Ionization and deuterium substitution in glycine, alanine and β-alanine. Journal of the American Chemical Society, 80 (15), 3813–38818. doi:10.1021/ja01548a002
  • Terpugov, E. L., & Degtyareva, O. V. (2015). Photo-induced processes and the reaction dynamics of bacteriorhodopsin. Biophysics, 60 (2), 232–243. doi:10.1134/S0006350915020189
  • Terpugov, E. L., & Degtyareva, O. V. (2001a). FTIR emission spectra of bacteriorhodopsin in a vibrational excited state. Biochemistry (Moscow)), 66 (11), 1315–1322. doi:10.1023/A:1013195605416.
  • Terpugov, E. L., & Degtyareva, O. V. (2001b). Infrared emission from photoexcited bacteriorhodopsin: Studies by Fourier transform infrared spectroscopy. Journal of Molecular Structure, 565-566 (1), 287–292. doi:10.1016/S0022-2860(00)00901-7
  • Terpugov, E. L., & Degtyareva, O. V. (2001c). Lysine IR-Emission spectrum excited by moderately intense visible radiation. Journal of Experimental and Theoretical Physics Letters, 73 (6), 282–284. doi:10.1134/1.1374261
  • Terpugova, S. E., Degtyareva, O. V., Savransky, V. V., & Terpugov, E. L. (2015). Light-induced mid-infrared emission of liquid carbon tetrachloride and benzene. American Journal of Analytical Chemistry, 06 (09), 731–745. doi:10.4236/ajac.2015.69070
  • Torbeev, V., Yu, Shavit, E., Weissbuch, I., Leiserowitz, L., & Lahav, M. (2005). Control of crystal polymorphism by tuning the structure of auxiliary molecules as nucleation inhibitors. The β-polymorph of glycine grown in aqueous solutions. Crystal Growth & Design, 5(6), 2190–2196. doi:10.1021/cg050200s
  • Tortonda, F. R., Pascual-Ahuir, J. L., Silla, E., & Tuñón, I. (1996). Why is glycine a zwitterion in aqueous solution? A theoretical study of solvent stabilising factors. Chemical Physics Letters., 260(1-2), 21–26. doi:10.1016/0009-2614(96)00839-1
  • Tsuge, A., Uwamino, Y., & Ishizuka, T. (1989). Application of laser-induced thermal emission spectroscopy to various samples. Applied Spectroscopy, 43 (7), 1145–1149. doi:10.1366/0003702894203598
  • Wojciechowski, A., Alzayed, N., Kityk, I., Berdowski, J., & Tylczynski, Z. (2010). Laser induced phenomena in γ-glycine crystals. Optica Applicata, 40(4), 1007–1012.
  • Zhu, G., Zhu, X., Fan, Q., & Wan, X. (2011). Raman spectra of amino acids and their aqueous solutions. Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy, 78(3), 1187–1195. doi:10.1016/j.saa.2010.12.079

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.