358
Views
26
CrossRef citations to date
0
Altmetric
Research Articles

Potential of graphene oxide as a drug delivery system for Sumatriptan: a detailed density functional theory study

, , ORCID Icon &
Pages 1611-1620 | Received 04 Feb 2020, Accepted 19 Feb 2020, Published online: 10 Mar 2020

References

  • An, X., & Jimmy, C. Y. (2011). Graphene-based photocatalytic composites. RSC Advances, 1(8), 1426–1434. doi:10.1039/c1ra00382h
  • Boota, M., Chen, C., Bécuwe, M., Miao, L., & Gogotsi, Y. (2016). Pseudocapacitance and excellent cyclability of 2,5-dimethoxy-1,4-benzoquinone on graphene. Energy & Environmental Science, 9(8), 2586–2594. doi:10.1039/C6EE00793G
  • Boys, S. F., & Bernardi, F. (1970). The calculation of small molecular interactions by the differences of separate total energies. Some procedures with reduced errors. Molecular Physics, 19(4), 553–566. doi:10.1080/00268977000101561
  • Chen, C., Boota, M., Xie, X., Zhao, M., Anasori, B., Ren, C. E., Miao, L., Jiang, J., & Gogotsi, Y. (2017). Charge transfer induced polymerization of edot confined between 2d titanium carbide layers. Journal of Materials Chemistry A, 5(11), 5260–5265. doi:10.1039/C7TA00149E
  • Cossi, M., Barone, V., Cammi, R., & Tomasi, J. (1996). Ab initio study of solvated molecules: A new implementation of the polarizable continuum model. Chemical Physics Letters, 255(4–6), 327–335. doi:10.1016/0009-2614(96)00349-1
  • Dastoorani, P., Khalilzadeh, M. A., Khaleghi, F., Maghsoodlou, M. T., Kaminsky, W., & Rad, A. S. (2019). Experimental and computational studies on the synthesis of diastereoselective natural-based meldrum spiro dibenzofuran derivatives. New Journal of Chemistry, 43(17), 6615–6621. doi:10.1039/C9NJ00766K
  • Ding, S., Chen, J. S., Luan, D., Boey, F. Y. C., Madhavi, S., & Lou, X. W. D. (2011). Graphene-supported anatase tio 2 nanosheets for fast lithium storage. Chemical Communications, 47(20), 5780–5782. doi:10.1039/c1cc10687b
  • Dreyer, D. R., Park, S., Bielawski, C. W., & Ruoff, R. S. (2010). The chemistry of graphene oxide. Chemical Society Reviews, 39(1), 228–240. doi:10.1039/b917103g
  • Frisch, M., Trucks, G. W., Schlegel, H. B., Scuseria, G. E., Robb, M. A., Cheeseman, J. R., Scalmani, G., Barone, V., Mennucci, B., Petersson, G. A., Nakatsuji, H., Caricato, M., Li, X., Hratchian, H. P., Izmaylov, A. F., Bloino, J., Zheng, G., Sonnenberg, J. L., Hada, M., … Fox, D. J. (2014). Gaussian 09, Revision D.01. Wallingford, CT: Gaussian, Inc.
  • Ganji, M., Yazdani, H., & Mirnejad, A. (2010). B36n36 fullerene-like nanocages: A novel material for drug delivery. Physica E: Low-Dimensional Systems and Nanostructures, 42(9), 2184–2189. doi:10.1016/j.physe.2010.04.018
  • Ghosh, M., Brahmachari, S., & Das, P. K. (2014). Ph‐responsive single walled carbon nanotube dispersion for target specific release of doxorubicin to cancer cells. Macromolecular Bioscience, 14(12), 1795–1806. doi:10.1002/mabi.201400290
  • Goerigk, L. (2014). How do dft-dcp, dft-nl, and dft-d3 compare for the description of london-dispersion effects in conformers and general thermochemistry? Journal of Chemical Theory and Computation, 10(3), 968–980. doi:10.1021/ct500026v
  • Guldi, D. M., & Sgobba, V. (2011). Carbon nanostructures for solar energy conversion schemes. Chemical Communications, 47(2), 606–610. doi:10.1039/C0CC02411B
  • Hasanzade, Z., & Raissi, H. (2018). Density functional theory calculations and molecular dynamics simulations of the adsorption of ellipticine anticancer drug on graphene oxide surface in aqueous medium as well as under controlled pH conditions. Journal of Molecular Liquids, 255, 269–278. doi:10.1016/j.molliq.2018.01.159
  • Hasanzade, Z., & Raissi, H. (2019). Assessment of the chitosan-functionalized graphene oxide as a carrier for loading thioguanine, an antitumor drug and effect of urea on adsorption process: Combination of dft computational and molecular dynamics simulation studies. Journal of Biomolecular Structure and Dynamics, 37(10), 2487–2497. doi:10.1080/07391102.2018.1496140
  • Iijima, S. (1991). Helical microtubules of graphitic carbon. Nature, 354(6348), 56–58. doi:10.1038/354056a0
  • Iijima, S., & Ichihashi, T. (1993). Single-shell carbon nanotubes of 1-nm diameter. Nature, 363(6430), 603–605. doi:10.1038/363603a0
  • Khodashenas, B., Ardjmand, M., Sharifzadeh Baei, M., Shokuhi Rad, A., & Akbarzadeh, A. (2020). Conjugation of pectin biopolymer with Au‐nanoparticles as a drug delivery system: Experimental and DFT studies. Applied Organometallic Chemistry. doi:10.1002/aoc.5609
  • Koninti, R. K., Sengupta, A., Gavvala, K., Ballav, N., & Hazra, P. (2014). Loading of an anti-cancer drug onto graphene oxide and subsequent release to DNA/rna: a direct optical detection. Nanoscale, 6(5), 2937–2944. doi:10.1039/C3NR06081K
  • Li, T., Amari, T., Semba, K., Yamamoto, T., & Takeoka, S. (2017). Construction and evaluation of ph-sensitive immunoliposomes for enhanced delivery of anticancer drug to erbb2 over-expressing breast cancer cells. Nanomedicine: Nanotechnology, Biology and Medicine, 13(3), 1219–1227. doi:10.1016/j.nano.2016.11.018
  • Liang, L., Shen, J.-W., & Wang, Q. (2017). Molecular dynamics study on DNA nanotubes as drug delivery vehicle for anticancer drugs. Colloids and Surfaces B: Biointerfaces, 153, 168–173. doi:10.1016/j.colsurfb.2017.02.021
  • Liu, X., Wang, X., Li, J., & Wang, X. (2016). Ozonated graphene oxides as high efficient sorbents for sr (ii) and u (vi) removal from aqueous solutions. Science China Chemistry, 59(7), 869–877.
  • Liu, Z., Robinson, J. T., Sun, X., & Dai, H. (2008). Pegylated nanographene oxide for delivery of water-insoluble cancer drugs. Journal of the American Chemical Society, 130(33), 10876–10877. doi:10.1021/ja803688x
  • Lu, K.-Y., Li, R., Hsu, C.-H., Lin, C.-W., Chou, S.-C., Tsai, M.-L., & Mi, F.-L. (2017). Development of a new type of multifunctional fucoidan-based nanoparticles for anticancer drug delivery. Carbohydrate Polymers, 165, 410–420. doi:10.1016/j.carbpol.2017.02.065
  • Meng, S., Maragakis, P., Papaloukas, C., & Kaxiras, E. (2007). DNA nucleoside interaction and identification with carbon nanotubes. Nano Letters, 7(1), 45–50. doi:10.1021/nl0619103
  • Mirmotahari, M., Sani, E., Shokuhi Rad, A., & Khalilzadeh, M. A. (2019). Calcium-doped single-wall nanotubes (ca/swcnts) as a superior carrier for atropine drug delivery: A quantum-chemical study in gas and solvent phases. Journal of Biomolecular Structure and Dynamics, 37(16), 4267–4273. doi:10.1080/07391102.2018.1546233
  • Mohtat, B., Siadati, S. A., Khalilzadeh, M. A., & Zareyee, D. (2018). The concern of emergence of multi-station reaction pathways that might make stepwise the mechanism of the 1, 3-dipolar cycloadditions of azides and alkynes. Journal of Molecular Structure, 1155, 58–64. doi:10.1016/j.molstruc.2017.10.034
  • Mukhopadhyay, S., Scheicher, R. H., Pandey, R., & Karna, S. P. (2011). Sensitivity of boron nitride nanotubes toward biomolecules of different polarities. The Journal of Physical Chemistry Letters, 2(19), 2442–2447. doi:10.1021/jz2010557
  • Novoselov, K. S., Geim, A. K., Morozov, S. V., Jiang, D., Zhang, Y., Dubonos, S. V., Grigorieva, I. V., Firsov, A. A. (2004). Electric field effect in atomically thin carbon films. Science, 306(5696), 666–669. doi:10.1126/science.1102896
  • Orecchioni, M., Cabizza, R., Bianco, A., & Delogu, L. G. (2015). Graphene as cancer theranostic tool: Progress and future challenges. Theranostics, 5(7), 710–723. doi:10.7150/thno.11387
  • Pantarotto, D., Singh, R., McCarthy, D., Erhardt, M., Briand, J.-P., Prato, M., Kostarelos, K., & Bianco, A. (2004). Functionalized carbon nanotubes for plasmid DNA gene delivery. Angewandte Chemie International Edition, 43(39), 5242–5246. doi:10.1002/anie.200460437
  • Sanchez, C., Shea, K. J., & Kitagawa, S. (2011). Recent progress in hybrid materials science. Chemical Society Reviews, 40(2), 471–472. doi:10.1039/c1cs90001c
  • Shenderova, O., Zhirnov, V., & Brenner, D. (2002). Carbon nanostructures. Critical Reviews in Solid State and Materials Sciences, 27(3-4), 227–356. doi:10.1080/10408430208500497
  • Sheshala, R., Khan, N., & Darwis, Y. (2011). Formulation and optimization of orally disintegrating tablets of sumatriptan succinate. Chemical & Pharmaceutical Bulletin, 59(8), 920–928. doi:10.1248/cpb.59.920
  • Singla, P., Riyaz, M., Singhal, S., & Goel, N. (2016). Theoretical study of adsorption of amino acids on graphene and bn sheet in gas and aqueous phase with empirical dft dispersion correction. Physical Chemistry Chemical Physics, 18(7), 5597–5604. doi:10.1039/C5CP07078C
  • Siqueira, J. R., Jr., Caseli, L., Crespilho, F. N., Zucolotto, V., & Oliveira, O. N., Jr. (2010). Immobilization of biomolecules on nanostructured films for biosensing. Biosensors and Bioelectronics, 25(6), 1254–1263. doi:10.1016/j.bios.2009.09.043
  • Song, W., Yang, T., Wang, X., Sun, Y., Ai, Y., Sheng, G., Hayat, T., Wang, X. (2016). Experimental and theoretical evidence for competitive interactions of tetracycline and sulfamethazine with reduced graphene oxides. Environmental Science: Nano, 3(6), 1318–1326. doi:10.1039/C6EN00306K
  • Sun, X., Liu, Z., Welsher, K., Robinson, J. T., Goodwin, A., Zaric, S., & Dai, H. (2008). Nano-graphene oxide for cellular imaging and drug delivery. Nano Research, 1(3), 203–212. doi:10.1007/s12274-008-8021-8
  • Torchilin, V. P. (2005). Lipid-core micelles for targeted drug delivery. Current Drug Delivery, 2(4), 319–327. doi:10.2174/156720105774370221
  • Vargas-Sánchez, R., Mendoza-Wilson, A., Balandrán-Quintana, R., Torrescano-Urrutia, G., & Sánchez-Escalante, A. (2015). Study of the molecular structure and chemical reactivity of pinocembrin by dft calculations. Computational and Theoretical Chemistry, 1058, 21–27. doi:10.1016/j.comptc.2015.01.014
  • Willner, I., & Willner, B. (2010). Biomolecule-based nanomaterials and nanostructures. Nano Letters, 10(10), 3805–3815. doi:10.1021/nl102083j
  • Yu, S., Wang, X., Yao, W., Wang, J., Ji, Y., Ai, Y., … Wang, X. (2017). Macroscopic, spectroscopic, and theoretical investigation for the interaction of phenol and naphthol on reduced graphene oxide. Environmental Science & Technology, 51(6), 3278–3286. doi:10.1021/acs.est.6b06259
  • Zardoost, M. R., Khalilzadeh, M. A., & Ataei, M. S. (2014). Effect of fluorine substitution on the reaction between methylene and acetone: a dft study. Progress in Reaction Kinetics and Mechanism, 39(1), 53–61. doi:10.3184/97809059274714X13874723178160
  • Zhang, L., Xia, J., Zhao, Q., Liu, L., & Zhang, Z. (2010). Functional graphene oxide as a nanocarrier for controlled loading and targeted delivery of mixed anticancer drugs. Small, 6(4), 537–544. doi:10.1002/smll.200901680
  • Zhu, S., Zhang, J., Qiao, C., Tang, S., Li, Y., Yuan, W., Li, B., Tian, L., Liu, F., Hu, R., Gao, H., Wei, H., Zhang, H., Sun, H., & Yang, B. (2011). Strongly green-photoluminescent graphene quantum dots for bioimaging applications. Chemical Communications, 47(24), 6858–6860. doi:10.1039/c1cc11122a

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.