339
Views
8
CrossRef citations to date
0
Altmetric
Research Articles

In silico identification of novel 5-HT2A antagonists supported with ligand- and target-based drug design methodologies

, , , &
Pages 1819-1837 | Received 29 Jan 2020, Accepted 02 Mar 2020, Published online: 17 Mar 2020

References

  • ADMET Predictor v 9.5, n.d. Simulations plus inc., lancaster, CA, USA
  • Almaula, N., Ebersole, B. J., Zhang, D., Weinstein, H., & Sealfon, S. C. (1996). Mapping the Binding Site Pocket of the Serotonin 5-Hydroxytryptamine 2A Receptor: Ser 3.36(159) PROVIDES A Second Interaction Site For The Protonated Amine Of Serotonin But Not Of Lysergic Acid Diethylamide Or Bufotenin. Journal of Biological Chemistry, 271(25), 14672–14675. doi:10.1074/jbc.271.25.14672
  • Baroni, M., Costantino, G., Cruciani, G., Riganelli, D., Valigi, R., & Clementi, S. (1993). Generating optimal linear PLS estimations (GOLPE): An advanced chemometric tool for handling 3D-QSAR problems. Quantitative Structure-Activity Relationships, 12(1), 9–20. doi:10.1002/qsar.19930120103
  • Celada, P., Bortolozzi, A., & Artigas, F. (2013). Serotonin 5-HT1A receptors as targets for agents to treat psychiatric disorders: Rationale and current status of research. CNS Drugs, 27(9), 703–716. doi:10.1007/s40263-013-0071-0
  • Chem3D Ultra v 7.0, (2001). Cambridge Soft Corporation, 100 Cambridge Park Dr, Cambridge, USA.
  • Daina, A., Michielin, O., & Zoete, V. (2017). SwissADME: A free web tool to evaluate pharmacokinetics, drug-likeness and medicinal chemistry friendliness of small molecules. Scientific Reports, 7, 42717. doi:10.1038/srep42717
  • Darmon, M., Al Awabdh, S., Emerit, M.-B., & Masson, J. (2015). Chapter Five - Insights into serotonin receptor trafficking: Cell membrane targeting and internalization. In: Wu, G. (Ed.), Progress in molecular biology and translational science, trafficking of GPCRs. Oxford, UK: Academic Press. pp. 97–126. doi:10.1016/bs.pmbts.2015.02.009
  • Davies, M., Nowotka, M., Papadatos, G., Dedman, N., Gaulton, A., Atkinson, F., Bellis, L., & Overington, J. P. (2015). ChEMBL web services: Streamlining access to drug discovery data and utilities. Nucleic Acids Research, 43(W1), W612–W620. doi:10.1093/nar/gkv352
  • Davis, R., & Wilde, M. I. (1996). Mirtazapine. CNS drugs, 5, 389–402. doi:10.2165/00023210-199605050-00007
  • Denys, D., Van Nieuwerburgh, F., Deforce, D., & Westenberg, H. G. M. (2006). Association between serotonergic candidate genes and specific phenotypes of obsessive compulsive disorder. Journal of Affective Disorders, 91(1), 39–44. doi:10.1016/j.jad.2005.12.011
  • Désaméricq, G., Schurhoff, F., Meary, A., Szöke, A., Macquin-Mavier, I., Bachoud-Lévi, A. C., & Maison, P. (2014). Long-term neurocognitive effects of antipsychotics in schizophrenia: A network meta-analysis. European Journal of Clinical Pharmacology, 70(2), 127–134. doi:10.1007/s00228-013-1600-y
  • Durán, Á., Martínez, G. C., & Pastor, M. (2008). Development and validation of AMANDA, a new algorithm for selecting highly relevant regions in molecular interaction fields. Journal of Chemical Information and Modeling, 48(9), 1813–1823. doi:10.1021/ci800037t
  • Duran, A., & Pastor, M. (2011). An advanced tool for computing and handling grid-independent. Descriptors. User Manual Version 1.06.
  • Durán, Á., Zamora, I., & Pastor, M. (2009). Suitability of GRIND-based principal properties for the description of molecular similarity and ligand-based virtual screening. Journal of Chemical Information and Modeling, 49(9), 2129–2138. doi:10.1021/ci900228x
  • Forli, S., Huey, R., Pique, M. E., Sanner, M. F., Goodsell, D. S., & Olson, A. J. (2016). Computational protein-ligand docking and virtual drug screening with the AutoDock suite. Nature Protocols, 11(5), 905–919. doi:10.1038/nprot.2016.051
  • Frazer, A., & Hensler, J. G. (1999). Serotonin involvement in physiological function and behavior. In Siegel G. J., Agranoff B. W., Albers R. W., et al., (Eds.), Basic neurochem. mol. cell. med. asp. (6th ed., Chapter 13, pp. 263–292). Philadelphia: Lippincott-Raven.
  • Frisch, M. J. (1998). Gaussian 98 (RevisionA.7). Pittsburgh, PA: Gaussian, Inc.
  • Ghosh, J., Lawless, M. S., Waldman, M., Gombar, V., & Fraczkiewicz, R. (2016). Modeling ADMET. Methods in Molecular Biology (Clifton, N.J.), 1425, 63–83. doi:10.1007/978-1-4939-3609-0_4
  • Gianotti, M., Corti, C., Delle Fratte, S., Di Fabio, R., Leslie, C. P., Pavone, F., Piccoli, L., Stasi, L., & Wigglesworth, M. J. (2010). Novel imidazobenzazepine derivatives as dual H1/5-HT2A antagonists for the treatment of sleep disorders. Bioorganic and Medicinal Chemistry Letters., 20(17), 5069–5073. doi:10.1016/j.bmcl.2010.07.029
  • Golbraikh, A., & Tropsha, A. (2002). Beware of q2!. Journal of Molecular Graphics and Modelling, 20(4), 269–276. doi:10.1016/S1093-3263(01)00123-1
  • Graham, J. M., Coughenour, L. L., Barr, B. M., Rock, D. L., & Nikam, S. S. (2008). 1-Aminoindanes as novel motif with potential atypical antipsychotic properties. Bioorganic and Medicinal Chemistry Letters., 18(2), 489–493. doi:10.1016/j.bmcl.2007.11.106
  • Gramatica, P. (2007). Principles of QSAR models validation: Internal and external. QSAR & Combinatorial Science, 26(5), 694–701. doi:10.1002/qsar.200610151
  • Holmes, I. P., Micheli, F., Gaines, S., Lorthioir, O., Watson, S. P., Fabio, R. D., Gentile, G., Heidbreder, C., Savoia, C., & Worby, A. (2009). Dopamine D3 receptor antagonists: The quest for a potentially selective PET ligand. Part one: Lead identification. Bioorganic and Medicinal Chemistry Letters., 19(16), 4799–4801. doi:10.1016/j.bmcl.2009.06.043
  • Humphrey, W., Dalke, A., & Schulten, K. (1996). VMD: Visual molecular dynamics. Journal of Molecular Graphics, 14(1), 33–38. 27–28. doi:10.1016/0263-7855(96)00018-5
  • Jensen, A. A., Plath, N., Pedersen, M. H. F., Isberg, V., Krall, J., Wellendorph, P., Stensbøl, T. B., Gloriam, D. E., Krogsgaard-Larsen, P., & Frølund, B. (2013). Design, synthesis, and pharmacological characterization of N- and O-substituted 5,6,7,8-tetrahydro-4H-isoxazolo[4,5-d]azepin-3-ol analogues: Novel 5-HT(2A)/5-HT(2C) receptor agonists with pro-cognitive properties. Journal of Medicinal Chemistry, 56(3), 1211–1227. doi:10.1021/jm301656h
  • Jones, G., Willett, P., Glen, R. C., Leach, A. R., & Taylor, R. (1997). Development and validation of a genetic algorithm for flexible docking. Journal of Molecular Biology., 267(3), 727–748. doi:10.1006/jmbi.1996.0897
  • Kanagarajadurai, K., Malini, M., Bhattacharya, A., Panicker, M. M., & Sowdhamini, R. (2009). Molecular modeling and docking studies of human 5-hydroxytryptamine 2A (5-HT2A) receptor for the identification of hotspots for ligand binding. Molecular Biosystems, 5(12), 1877–1888. doi:10.1039/b906391a
  • Kimura, K. T., Asada, H., Inoue, A., Kadji, F. M. N., Im, D., Mori, C., Arakawa, T., Hirata, K., Nomura, Y., Nomura, N., Aoki, J., Iwata, S., & Shimamura, T. (2019). Structures of the 5-HT2A receptor in complex with the antipsychotics risperidone and zotepine. Nature Structural & Molecular Biology, 26(2), 121–128. doi:10.1038/s41594-018-0180-z
  • Korb, O., StüTzle, T., & Exner, T. E. (2009). Empirical scoring functions for advanced protein-ligand docking with PLANTS. Journal of Chemical Information and Modeling, 49(1), 84–96. doi:10.1021/ci800298z
  • Koskinen, T., Ruotsalainen, S., Puumala, T., Lappalainen, R., Koivisto, E., Männistö, P. T., & Sirviö, J. (2000). Activation of 5-HT2A receptors impairs response control of rats in a five-choice serial reaction time task. Neuropharmacology, 39(3), 471–481. doi:10.1016/S0028-3908(99)00159-8
  • Kufareva, I., & Abagyan, R. (2012). Methods of protein structure comparison. Methods Mol. Biol. Clifton NJ, 857, 231–257. 10.1007/978-1-61779-588-6_10
  • Roy, K., Kar, S., & Narayan Das, R. (2015). A primer on QSAR/QSPR modeling (p. 121). Cham: Springer.
  • Ladduwahetty, T., Gilligan, M., Humphries, A., Merchant, K. J., Fish, R., McAlister, G., Ivarsson, M., Dominguez, M., O’Connor, D., & MacLeod, A. M. (2010). Non-basic ligands for aminergic GPCRs: The discovery and development diaryl sulfones as selective, orally bioavailable 5-HT2A receptor antagonists for the treatment of sleep disorders. Bioorganic and Medicinal Chemistry Letters., 20(12), 3708–3712. doi:10.1016/j.bmcl.2010.04.090
  • Lin, F., Li, F., Wang, C., Wang, J., Yang, Y., Yang, L., & Li, Y. (2017). Mechanism exploration of arylpiperazine derivatives targeting the 5-HT2A receptor by in silico methods. Molecules, 22(7), 1064. doi:10.3390/molecules22071064
  • Lin, S.-H., Lee, L.-T., & Yang, Y. K. (2014). Serotonin and mental disorders: A concise review on molecular neuroimaging evidence. Clinical Psychopharmacology and Neuroscience, 12(3), 196–202. doi:10.9758/cpn.2014.12.3.196
  • Lomize, M. A., Lomize, A. L., Pogozheva, I. D., & Mosberg, H. I. (2006). OPM: Orientations of proteins in membranes database. Bioinformatics , 22(5), 623–625. doi:10.1093/bioinformatics/btk023
  • Marek, G. J., Carpenter, L. L., McDougle, C. J., & Price, L. H. (2003). Synergistic action of 5-HT2A antagonists and selective serotonin reuptake inhibitors in neuropsychiatric disorders. Neuropsychopharmacology, 28(2), 402–412. doi:10.1038/sj.npp.1300057
  • Marvin Sketch v 16.10.24, (2016). ChemAxon, Budapest, Hungary.
  • Meltzer, H. Y. (2004). What’s atypical about atypical antipsychotic drugs?. Current Opinion in Pharmacology., 4(1), 53–57. doi:10.1016/j.coph.2003.09.010
  • Mitra, P., (2017). A QSAR model of Olanzapine derivatives as potential inhibitors for 5-HT2A Receptor. Bioinformation, 13(10), 339–342., Rastogi, A., Rajpoot, M., Kumar, A., & Srivastava, V. doi:10.6026/97320630013339
  • Morris, G. M., Huey, R., Lindstrom, W., Sanner, M. F., Belew, R. K., Goodsell, D. S., & Olson, A. J. (2009). AutoDock4 and AutoDockTools4: Automated docking with selective receptor flexibility. Journal of Computational Chemistry, 30(16), 2785–2791. doi:10.1002/jcc.21256
  • Mukhtar, S., Sajid Kiani, Y., & Jabeen, I. (2017). Molecular docking simulations and GRID-independent molecular descriptor (GRIND) analysis to probe stereoselective interactions of CYP3A4 inhibitors. Medicinal Chemistry Research, 26(10), 2322–2335. doi:10.1007/s00044-017-1933-7
  • Munk, C., Isberg, V., Mordalski, S., Harpsøe, K., Rataj, K., Hauser, A. S., Kolb, P., Bojarski, A. J., Vriend, G., & Gloriam, D. E. (2016). GPCRdb: The G protein-coupled receptor database – an introduction. British Journal of Pharmacology., 173(14), 2195–2207. doi:10.1111/bph.13509
  • Munusamy, V., Yap, B. K., Buckle, M. J. C., Doughty, S. W., & Chung, L. Y. (2013). Structure-based identification of aporphines with selective 5-HT(2A) receptor-binding activity. Chemical Biology & Drug Design, 81(2), 250–256. doi:10.1111/cbdd.12069
  • Ojha, P. K., & Roy, K. (2011). Comparative QSARs for antimalarial endochins: Importance of descriptor-thinning and noise reduction prior to feature selection. Chemometrics and Intelligent Laborary Systems., 109(2), 146–161. doi:10.1016/j.chemolab.2011.08.007
  • Ostrowska, K., Grzeszczuk, D., Głuch-Lutwin, M., Gryboś, A., Siwek, A., Leśniak, A., Sacharczuk, M., & Trzaskowski, B. (2018). 5-HT1A and 5-HT2A receptors affinity, docking studies and pharmacological evaluation of a series of 8-acetyl-7-hydroxy-4-methylcoumarin derivatives. Bioorganic and Medicinal Chemistry., 26(2), 527–535. doi:10.1016/j.bmc.2017.12.016
  • Pándy-Szekeres, G., Munk, C., Tsonkov, T. M., Mordalski, S., Harpsøe, K., Hauser, A. S., Bojarski, A. J., & Gloriam, D. E. (2018). GPCRdb in 2018: Adding GPCR structure models and ligands. Nucleic Acids Research, 46(D1), D440–D446. doi:10.1093/nar/gkx1109
  • Pastor, M., Cruciani, G., McLay, I., Pickett, S., & Clementi, S. (2000). GRid-INdependent Descriptors (GRIND): A novel class of alignment-independent three-dimensional molecular descriptors. Journal of Medicinal Chemistry, 43(17), 3233–3243. doi:10.1021/jm000941m
  • Pazos, A., Probst, A., & Palacios, J. M. (1987). Serotonin receptors in the human brain–IV. Autoradiographic mapping of serotonin-2 receptors. Neuroscience, 21(1), 123–139. doi:10.1016/0306-4522(87)90327-7
  • Pearlman, R. S. (1993). 3D QSAR in Drug design: Theory methods and applications (1st ed.). Leiden, Holland: ESCOM Science Publishers.
  • Pentacle, v 1.0.6, (2009). Molecular Discovery Ltd., Perugia, Italy.
  • Perani, D., Garibotto, V., Gorini, A., Moresco, R. M., Henin, M., Panzacchi, A., Matarrese, M., Carpinelli, A., Bellodi, L., & Fazio, F. (2008). In vivo PET study of 5HT(2A) serotonin and D(2) dopamine dysfunction in drug-naive obsessive-compulsive disorder. NeuroImage, 42(1), 306–314. doi:10.1016/j.neuroimage.2008.04.233
  • Phillips, J. C., Braun, R., Wang, W., Gumbart, J., Tajkhorshid, E., Villa, E., Chipot, C., Skeel, R. D., Kalé, L., & Schulten, K. (2005). Scalable molecular dynamics with NAMD. Journal of Computational Chemistry, 26(16), 1781–1802. doi:10.1002/jcc.20289
  • Raote, I., Bhattacharya, A., & Panicker, M. M. (2007). Serotonin 2A (5-HT2A) receptor function: ligand-dependent mechanisms and pathways. In A. Chattopadhyay, (Ed.), Serotonin Receptors in Neurobiology, Frontiers in Neuroscience. Boca Raton, FL: CRC Press/Taylor & Francis.
  • Reva, B. A., Finkelstein, A. V., & Skolnick, J. (1998). What is the probability of a chance prediction of a protein structure with an rmsd of 6 å?. Folding and Design., 3(2), 141–147.(98)00019-4 doi:10.1016/S1359-0278(98)00019-4
  • Roothaan, C. C. J. (1951). New developments in molecular orbital theory. Reviews of Modern Physics, 23(2), 69–89. doi:10.1103/RevModPhys.23.69
  • Roy, K., Kar, S., & Ambure, P. (2015). On a simple approach for determining applicability domain of QSAR models. Chemometrics and Intelligent Laborary Systems., 145, 22–29. doi:10.1016/j.chemolab.2015.04.013
  • Roy, K., Mitra, I., Kar, S., Ojha, P. K., Das, R. N., & Kabir, H. (2012). Comparative studies on some metrics for external validation of QSPR models. Journal of Chemical Information and Modeling, 52(2), 396–408. doi:10.1021/ci200520g
  • Roy, P. P., & Roy, K. (2008). On some aspects of variable selection for partial least squares regression models. QSAR & Combinatorial Science, 27(3), 302–313. doi:10.1002/qsar.200710043
  • Ruzic, D., Petkovic, M., Agbaba, D., Ganesan, A., & Nikolic, K. (2019). Combined ligand and fragment-based drug design of selective histone deacetylase - 6 inhibitors. Molecular Informatics, 38,e1800083 (1-15). doi:10.1002/minf.201800083
  • Sliwoski, G., Kothiwale, S., Meiler, J., & Lowe, E. W. (2014). Computational methods in drug discovery. Pharmacological Reviews, 66(1), 334–395. doi:10.1124/pr.112.007336
  • Smith, C. (2003). Drug target validation: Hitting the target. Nature, 422(6929), 342–345. 341, 343, 345 passim. doi:10.1038/422341a
  • SPSS Inc. v 18.0, (2009). PASW Statistics for Windows, Chicago, IL.
  • Stewart, J. J. P. (1989a). Optimization of parameters for semiempirical methods II. Applications. Journal of Computational Chemistry, 10(2), 221–264. doi:10.1002/jcc.540100209
  • Stewart, J. J. P. (1989b). Optimization of parameters for semiempirical methods I. Method. Journal of Computational Chemistry, 10(2), 209–220. doi:10.1002/jcc.540100208
  • Tan, E. J., & Rossell, S. L. (2014). Building a neurocognitive profile of thought disorder in schizophrenia using a standardized test battery. Schizophrenia Research, 152(1), 242–245. doi:10.1016/j.schres.2013.11.001
  • Tropsha, A. (2010). Best practices for QSAR model development, validation, and exploitation. Molecular Informatics, 29(6-7), 476–488. doi:10.1002/minf.201000061
  • Trott, O., & Olson, A. J. (2010). AutoDock Vina: Improving the speed and accuracy of docking with a new scoring function, efficient optimization and multithreading. Journal of Computational Chemistry, 31, 455–461. doi:10.1002/jcc.21334
  • Vanommeslaeghe, K., Hatcher, E., Acharya, C., Kundu, S., Zhong, S., Shim, J., Darian, E., Guvench, O., Lopes, P., Vorobyov, I., & Mackerell, A. D. (2010). CHARMM general force field: A force field for drug-like molecules compatible with the CHARMM all-atom additive biological force fields. Journal of Computational Chemistry, 31, 671–690. doi:10.1002/jcc.21367
  • Wacker, D., Wang, S., McCorvy, J. D., Betz, R. M., Venkatakrishnan, A. J., Levit, A., Lansu, K., Schools, Z. L., Che, T., Nichols, D. E., Shoichet, B. K., Dror, R. O., & Roth, B. L. (2017). Crystal Structure of an LSD-bound human serotonin receptor. Cell, 168(3), 377–389.e12. doi:10.1016/j.cell.2016.12.033
  • Walitza, S., Bové, D. S., Romanos, M., Renner, T., Held, L., Simons, M., Wewetzer, C., Fleischhaker, C., Remschmidt, H., Warnke, A., & Grünblatt, E. (2012). Pilot study on HTR2A promoter polymorphism, -1438G/A (rs6311) and a nearby copy number variation showed association with onset and severity in early onset obsessive-compulsive disorder. Journal of Neural Transmission, 119(4), 507–515. Vienna Austria 1996. doi:10.1007/s00702-011-0699-1
  • Wang Gallaher, S. (1993). Site-directed mutagenesis of the serotonin 5-hydroxytrypamine2 receptor: Identification of amino acids necessary for ligand binding and receptor activation. Molecular Pharmacology, 43(6), 931–940.
  • Wermuth (2003)., The practice of medicinal chemistry (2nd ed.). San Diego, CA: Academic Press.
  • Wilson, K. J., van Niel, M. B., Cooper, L., Bloomfield, D., O’Connor, D., Fish, L. R., & MacLeod, A. M. (2007). 2,5-Disubstituted pyridines: The discovery of a novel series of 5-HT2A ligands. Bioorganic and Medicinal Chemistry Letters., 17(9), 2643–2648. doi:10.1016/j.bmcl.2007.01.098
  • Wold, S., Eriksson, L., Trygg, J., & Kettaneh, N. 2004. The PLS method – partial least squares projections to latent structures – and its applications in industrial RDP (research, development, and production). 45.
  • Yu, W., He, X., Vanommeslaeghe, K., & MacKerell, A. D. (2012). Extension of the CHARMM General Force Field to sulfonyl-containing compounds and its utility in biomolecular simulations. Journal of Computational Chemistry, 33(31), 2451–2468. doi:10.1002/jcc.23067
  • Yuan, X., & Xu, Y. (2018). Recent Trends and Applications of Molecular Modeling in GPCR−Ligand Recognition and Structure-Based Drug Design. International Journal of Molecular Sciences, 19,1-16. doi:10.3390/ijms19072105
  • Zhang, C., Li, Q., Meng, L., & Ren, Y. (2019). Design of novel dopamine D 2 and serotonin 5-HT 2A receptors dual antagonists toward schizophrenia: An integrated study with QSAR, molecular docking, virtual screening and molecular dynamics simulations. Journal of Biomolecular Structure and Dynamics, 38(3), 860-885. https://doi.org/doi:10.1080/07391102.2019.1590244

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.