239
Views
1
CrossRef citations to date
0
Altmetric
Research Articles

In silico studies of the inhibition mechanism of dengue with papain

, , &
Pages 1912-1927 | Received 26 Oct 2019, Accepted 03 Mar 2020, Published online: 06 Apr 2020

References

  • Abraham, M. J., Murtola, T., Schulz, R., Páll, S., Smith, J. C., Hess, B., & Lindahl, E. (2015). GROMACS: High performance molecular simulations through multi-level parallelism from laptops to supercomputers. SoftwareX, 1–2, 19–25. 10.1016/j.softx.2015.06.001
  • Ahmad, N., Fazal, H., Ayaz, M., Abbasi, B. H., Mohammad, I., & Fazal, L. (2011). Dengue fever treatment with Carica papaya leaves extracts. Asian Pacific Journal of Tropical Biomedicine, 1(4), 330–333. 10.1016/S2221-1691(11)60055-5
  • Alhoot, M. A., Rathinam, A. K., Wang, S. M., Manikam, R., & Sekaran, S. D. (2013). Inhibition of dengue virus entry into target cells using synthetic antiviral peptides. International Journal of Medical Sciences, 10(6), 719–729. 10.7150/ijms.5037
  • Amir-Hassan, A., Lee, V. S., Baharuddin, A., Othman, S., Xu, Y., Huang, M., Yusof, R., Rahman, N. A., & Othman, R. (2017). Conformational and energy evaluations of novel peptides binding to dengue virus envelope protein. Journal of Molecular Graphics and Modelling, 74, 273–287. 10.1016/j.jmgm.2017.03.010
  • Anusuya, S., & Gromiha, M. M. (2019). Structural basis of flavonoids as dengue polymerase inhibitors: Insights from QSAR and docking studies. Journal of Biomolecular Structure and Dynamics, 37(1), 104–115. 10.1080/07391102.2017.1419146
  • Beckel-Mitchener, A. C., Miera, A., Keller, R., & Perrone-Bizzozero, N. (2002). Poly(A) Tail Length-dependent Stabilization of GAP-43 mRNA by the RNA-binding Protein HuD. Journal of Biological Chemistry 277(31), 27996–8002. doi:10.1074/jbc.M201982200
  • Bergamaschi, G., Fassi, E. M. A., Romanato, A., D'Annessa, I., Odinolfi, M. T., Brambilla, D., Damin, F., Chiari, M., Gori, A., Colombo, G., & Cretich, M. (2019). Computational analysis of dengue virus envelope protein (E) reveals an epitope with flavivirus immunodiagnostic potential in peptide microarrays. International Journal of Molecular Sciences, 20(8), 1921. 10.3390/ijms20081921
  • Bernardes, C. E. S., Canongia Lopes, J. N., & Da Piedade, M. E. M. (2013). All-atom force field for molecular dynamics simulations on organotransition metal solids and liquids. The Journal of Physical Chemistry A, 117(43), 11107–11113. 10.1021/jp407739h
  • Best, S. M. (2017). The many faces of the flavivirus NS5 protein in antagonism of type I interferon signaling. Journal of Virology, 91(3), e01970–16. 10.1128/JVI.01970-16
  • Beveridge, A. J. (1996). A theoretical study of the active sites of papain and S195C rat trypsin: Implications for the low reactivity of mutant serine proteinases. Protein Science, 5(7), 1355–1365. 10.1002/pro.5560050714
  • Boopathi, S., & Kolandaivel, P. (2016). Fe2 + binding on amyloid β-peptide promotes aggregation. Proteins: Structure, Function, and Bioinformatics, 84(9), 1257–1274. 10.1002/prot.25075
  • Borhani, D. W., & Shaw, D. E. (2012). The future of molecular dynamics simulations in drug discovery. Journal of Computer-Aided Molecular Design, 26(1), 15–26. 10.1007/s10822-011-9517-y
  • Bornot, A., Etchebest, C., & De Brevern, A. G. (2011). Predicting protein flexibility through the prediction of local structures. Proteins: Structure, Function, and Bioinformatics, 79(3), 839–852. 10.1002/prot.22922
  • Bryantsev, V. S., Diallo, M. S., van Duin, A. C. T., & Goddard, W. A. (2009). Evaluation of B3LYP, X3LYP, and M06-class density functionals for predicting the binding energies of neutral, protonated, and deprotonated water clusters. Journal of Chemical Theory and Computation, 5(4), 1016–1026. 10.1021/ct800549f
  • Caflisch, A. (2018). Protein structure-based drug design: From docking to molecular dynamics Pawe ł Sled z and Amedeo Caflisch. Current Opinion in Structural Biology, (48), 93–102. 10.1016/j.sbi.2017.10.010
  • Carter, P., Andersen, C. A. F., & Rost, B. (2003). DSSPcont: Continuous secondary structure assignments for proteins. Nucleic Acids Research, 31(13), 3293–3295. 10.1093/nar/gkg626
  • Chepkorir, E., Lutomiah, J., Mutisya, J., Mulwa, F., Orindi, B., Ng’ang’a, Z., & Sang, R. (2014). The vector competence of Ae. aegypti mosquito populations from Kilifi and Nairobi for dengue-2 virus and the effect of temperature. International Journal of Infectious Diseases, 21, 3–4. 10.1016/j.ijid.2014.03.413
  • Chohan, T. A., Qian, H. Y., Pan, Y. L., & Chen, J. Z. (2016). Molecular simulation studies on the binding selectivity of 2-anilino-4-(thiazol-5-yl)-pyrimidines in complexes with CDK2 and CDK7. Molecular Biosystems, 12(1), 145–161. 10.1039/C5MB00630A
  • Da Silva, R. R., Santos, J. M., Ramalho, T. C., & Figueroa-Villar, J. D. (2006). Concerning the FERMO concept and Pearson’s Hard and Soft acid-base principle. Journal of the Brazilian Chemical Society, 17(2), 223–226. 10.1590/S0103-50532006000200002
  • Deepa, P., Kolandaivel, P., & Senthilkumar, K. (2011). Structural properties and the effect of 2,6-diaminoanthraquinone on G-tetrad, non-G-tetrads, and mixed tetrads-A density functional theory study. International Journal of Quantum Chemistry, 111(12), 3239–3250. 10.1002/qua.22720
  • Degrève, L., Fuzo, C. A., & Caliri, A. (2012). Extensive structural change of the envelope protein of dengue virus induced by a tuned ionic strength: Conformational and energetic analyses. Journal of Computer-Aided Molecular Design, 26(12), 1311–1325. 10.1007/s10822-012-9616-4
  • Drenth, J., Kalk, K. H., & Swen, M. (1976). Binding of chloromethyl ketone substrate analogs to crystalline papain. Biochemistry, 15(17), 3731–3738. 10.1021/bi00662a014
  • Durrant, J. D., & Mccammon, J. A. (2011). Molecular dynamics simulations and drug discovery. BMC Biology, 9(1), 1–9. 10.1186/1741-7007-9-71
  • Eerde, V., Gottschamel, J., Bock, R., Eraker, K., Hansen, A., Mweemba, H., & Clarke, J. L. (2019). Production of tetravalent dengue virus envelope protein domain III based antigens in lettuce chloroplasts and immunologic analysis for future oral vaccine development. Plant Biotechnology Journal, 17(7), 1408–1417. 10.1111/pbi.13065
  • Fogarty, R. M., Rowe, R., Matthews, R. P., Clough, M. T., Ashworth, C. R., Brandt, A., Corbett, P. J., Palgrave, R. G., Smith, E. F., Bourne, R. A., Chamberlain, T. W., Thompson, P. B. J., Hunt, P. A., & Lovelock, K. R. J. (2018). Atomic charges of sulfur in ionic liquids: Experiments and calculations. Faraday Discussions, 206, 183–201. 10.1039/C7FD00155J
  • Fraser, J. E., Rawlinson, S. M., Heaton, S. M., & Jans, D. A. (2016). Dynamic nucleolar targeting of dengue virus polymerase NS5 in response to extracellular pH. Journal of Virology, 90(12), 5797–5807. 10.1128/JVI.02727-15
  • Ganesan, A., Coote, M. L., & Barakat, K. (2017). Molecular dynamics-driven drug discovery: Leaping forward with confidence. Drug Discovery Today., 22(2), 249–269. 10.1016/j.drudis.2016.11.001
  • Gao, Z., & Ding, Y. (2017). DFT study of CO2and H2O co-adsorption on carbon models of coal surface. Journal of Molecular Modeling, 23(6), 187. 10.1007/s00894-017-3356-2
  • Ghosh, I., & Talukdar, P. (2019). Molecular docking and pharmacokinetics study for selected leaf phytochemicals from Carica papaya Linn. against dengue virus protein, NS2B / NS3 protease. World Scientific News, 124(2), 264–278.
  • Gonçalves, R. L., de Lima Menezes, G., Sussuchi, L., Moreli, M. L., Mottin, M., Andrade, C. H., Pereira, M., & da Silva, R. A. (2019). Dynamic behavior of Dengue and Zika viruses NS1 protein reveals monomer–monomer interaction mechanisms and insights to rational drug design. Journal of Biomolecular Structure and Dynamics, 1–11. 10.1080/07391102.2019.1677504
  • Grabowski, S. J. (2013). Non-covalent interactions - QTAIM and NBO analysis. Journal of Molecular Modeling, 19(11), 4713–4721. 10.1007/s00894-012-1463-7
  • Grdadolnik, J., Merzel, F., & Avbelj, F. (2017). Origin of hydrophobicity and enhanced water hydrogen bond strength near purely hydrophobic solutes. Proceedings of the National Academy of Sciences, 114(2), 322–327. 10.1073/pnas.1612480114
  • Greener, J. G., & Sternberg, M. J. E. (2018). Structure-based prediction of protein allostery. Current Opinion in Structural Biology, 50, 1–8. 10.1016/j.sbi.2017.10.002
  • Guardia, C. D. L., & Lleonart, R. ( (2014). 2014). Progress in the identification of dengue virus entry / fusion inhibitors. BioMed Research International, 2014, 1–13. 10.1155/2014/825039
  • Gubler, D. J. (1998). Dengue and dengue hemorrhagic fever. Clinical Microbiology Reviews, 11(3), 480–496. 10.1128/CMR.11.3.480
  • Harrison, M. J., Burton, N. A., & Hillier, I. H. (1997). Catalytic mechanism of the enzyme papain: Predictions with a hybrid quantum mechanical/molecular mechanical potential. Journal of the American Chemical Society, 119(50), 12285–12291. 10.1021/ja9711472
  • Health, P. (2019). An open-label, randomized prospective study to evaluate the efficacy and safety of Carica papaya leaf extract for thrombocytopenia associated with dengue fever in pediatric subjects. Pediatric Health Medicine and Therapeutics, 2019(10), 5–11. 10.2147/PHMT.S176712
  • Hunt, P. A., Ashworth, C. R., & Matthews, R. P. (2015). Hydrogen bonding in ionic liquids. Chemical Society Reviews, 44(5), 1257–1288. 10.1039/C4CS00278D
  • Jensen, K. P., & Jorgensen, W. L. (2006). Halide, ammonium, and alkali metal ion parameters for modeling aqueous solutions. Journal of Chemical Theory and Computation, 2(6), 1499–1509. 10.1021/ct600252r
  • Jorgensen, W. L. (2016). Computer-aided discovery of anti-HIV agents. Bioorganic & Medicinal Chemistry, 24(20), 4768–4778. 10.1016/j.bmc.2016.07.039
  • Kahn, K., & Bruice, T. C. (2002). Parameterization of OPLS-AA force field for the conformational analysis of macrocyclic polyketides. Journal of Computational Chemistry, 23(10), 977–996. 10.1002/jcc.10051
  • Kaminski, G. A., Friesner, R. A., Tirado-Rives, J., & Jorgensen, W. L. (2001). Evaluation and reparametrization of the OPLS-AA force field for proteins via comparison with accurate quantum chemical calculations on peptides. The Journal of Physical Chemistry B, 105(28), 6474–6487. 10.1021/jp003919d
  • Kaye, S. L., Sansom, M. S. P., & Biggin, P. C. (2006). Molecular dynamics simulations of the ligand-binding domain of an N-methyl-D-aspartate receptor. Journal of Biological Chemistry, 281(18), 12736–12742. 10.1074/jbc.M512728200
  • Khan, R. A., Afroz, S., Minhas, G., Battu, S., & Khan, N. (2019). Cytokine Dengue virus envelope protein domain III induces pro-in fl ammatory signature and triggers activation of in fl ammasome. Cytokine, 123, 154780. 10.1016/j.cyto.2019.154780
  • Komáromi, A. F., & Komáromi, I. (2016). Modeling the archetype cysteine protease reaction using dispersion corrected density functional methods in ONIOM-type hybrid QM/MM calculations; the proteolytic reaction of papain. Physical Chemistry Chemical Physics, 18(48), 32847–32861. 10.1039/C6CP06869C
  • Kroschewski, H., Sagripanti, J., Davidson, A. D., & Davidson, A. D. (2009). Communication Identification of amino acids in the dengue virus type 2 envelope glycoprotein critical to virus infectivity. Journal of General Virology, 90(10), 2457–2461. 10.1099/vir.0.011486-0
  • Leal, E. S., Adler, N. S., Fernández, G. A., Gebhard, L. G., Battini, L., Aucar, M. G., Videla, M., Monge, M. E., Hernández de los Ríos, A., Acosta Dávila, J. A., Morell, M. L., Cordo, S. M., García, C. C., Gamarnik, A. V., Cavasotto, C. N., & Bollini, M. (2019). De novo design approaches targeting an envelope protein pocket to identify small molecules against dengue virus. European Journal of Medicinal Chemistry, 182, 111628. 10.1016/j.ejmech.2019.111628
  • Liao, K. H., Chen, K. B., Lee, W. Y., Sun, M. F., Lee, C. C., & Chen, C. Y. C. (2014). Ligand-based and structure-based investigation for Alzheimer’s disease from traditional Chinese medicine. Evidence-Based Complementary and Alternative Medicine, 2014, 1–16. 10.1155/2014/364819
  • Lim, W. Z., Cheng, P. G., Abdulrahman, A. Y., & Teoh, T. C. (2019). The identification of active compounds in Ganoderma lucidum var. antler extract inhibiting dengue virus serine protease and its computational studies. Journal of Biomolecular Structure and Dynamics, 1–16. 10.1080/07391102.2019.1678523
  • Lonkala, S., & Reddy, A. R. N. (2019). Antibacterial Activity of Carica papaya Leaves and Allium sativum Cloves Alone and in Combination against Multiple Strains. Pharmacognosy Journal, 11(3), 600–602. 10.5530/pj.2019.11.95
  • Lourenço, J., Tennant, W., Faria, N. R., Walker, A., Gupta, S., & Recker, M. (2018). Challenges in dengue research: A computational perspective. Evolutionary Applications, 11(4), 516–533. 10.1111/eva.12554
  • Low, J. G. H., Ooi, E. E., & Vasudevan, S. G. (2017). Current status of dengue therapeutics research and development. The Journal of Infectious Diseases, 215(suppl_2), S96–S102. 10.1093/infdis/jiw423
  • Madjos, G. G. (2019). Comparative cytotoxic properties of two varieties of Carica papaya leaf extracts from Mindanao, Philippines using Brine Shrimp Lethality Assay Comparative Cytotoxic Properties of Two Varieties of Carica papaya leaf extracts from Mindanao, Philippines using Brine Shrimp Lethality Assay. Bulletin of Environment, Pharmacology and Life Sciences, 8(2), 113–118.
  • Manjula, S., & Kumaradhas, P. (2019). Evaluating the suitability of RNA intervention mechanism exerted by some flavonoid molecules against dengue virus MTase RNA capping site: A molecular docking, molecular dynamics simulation, and binding free energy study. Journal of Biomolecular Structure and Dynamics, 1–11. 10.1080/07391102.2019.1666744
  • Marques, S. M., Bednar, D., & Damborsky, J. (2019, January). Computational study of protein-ligand unbinding for enzyme engineering. Frontiers in Chemistry, 6, 1–15. 10.3389/fchem.2018.00650
  • Martı, G., & Fabritiis, G. D. (2018). Simulations meet machine learning in structural biology. Current Opinion in Structural Biology, 49, 1339–1144. 10.1016/j.sbi.2018.02.004
  • Mathammal, R., Jayamani, N., & Geetha, N. (2013). Molecular structure, NMR, HOMO, LUMO, and vibrational analysis of O-anisic acid and anisic acid based on DFT calculations. Journal of Spectroscopy, 2013, 1–18. 10.1155/2013/171735
  • Minai, R., Matsuo, Y., Onuki, H., & Hirota, H. (2008). Method for comparing the structures of protein ligand-binding sites and application for predicting protein-drug interactions. Proteins: Structure, Function, and Bioinformatics, 72(1), 367–381. 10.1002/prot.21933
  • Modis, Y., Ogata, S., Clements, D., & Harrison, S. C. (2005). Variable surface epitopes in the crystal structure of dengue virus type 3 envelope glycoprotein †. Journal of Virology, 79(2), 1223–1231. 10.1128/JVI.79.2.1223-1231.2005
  • Mohd Abd Razak, M. R., Norahmad, N. A., Md Jelas, N. H., Jusoh, B., Muhammad, A., Mohmad Misnan, N., Zainol, M., Thayan, R., & Syed Mohamed, A. F. (2019). Preliminary study on the expression of endothelial cell biology related genes in the liver of dengue virus infected mice treated with Carica papaya leaf juice. BMC Research Notes, 12(1), 206. 10.1186/s13104-019-4242-z
  • Mondotte, J. A., Lozach, P., Amara, A., & Gamarnik, A. V. (2007). Essential role of dengue virus envelope protein N glycosylation at asparagine-67 during viral propagation. Journal of Virology, 81(13), 7136–7148. 10.1128/JVI.00116-07
  • Mortier, J., Rakers, C., Bermudez, M., Murgueitio, M. S., Riniker, S., & Wolber, G. (2015). The impact of molecular dynamics on drug design: Applications for the characterization of ligand – macromolecule complexes. Drug Discovery Today., 20(6), 686–702. 10.1016/j.drudis.2015.01.003
  • Musyoka, T. M., Kanzi, A. M., Lobb, K. A., & Tastan Bishop, Ö. (2016). Structure based docking and molecular dynamic studies of plasmodial cysteine proteases against a South African natural compound and its analogs. Scientific Reports, 6(1), 23690. 10.1038/srep23690
  • Mutter, S. T., Deeth, R. J., Turner, M., & Platts, J. A. (2018). Benchmarking of copper(II) LFMM parameters for studying amyloid-β peptides. Journal of Biomolecular Structure and Dynamics, 36(5), 1145–1153. 10.1080/07391102.2017.1313780
  • Nakhate, Y. D., Talekar, K. S., Giri, S. V., & Vasekar, R. D. (2019). Pharmacological and chemical composition of Carica papaya: On overview. World Journal of Pharmaceutical Research, 8(5), 811–821. 10.20959/wjpr20195-14650
  • Nguyen, N. M., Duong, B. T., Azam, M., Phuong, T. T., Park, H., Thuy, P. T. B., & Yeo, S.-J. (2019). Diagnostic performance of dengue virus envelope domain III in acute dengue infection. International Journal of Molecular Sciences, 20(14), 3464. 10.3390/ijms20143464
  • Nguyen, T. T., Viet, M. H., & Li, M. S. (2014). Effects of water models on binding affinity: Evidence from all-atom simulation of binding of tamiflu to A/H5N1 neuraminidase. The Scientific World Journal, 2014, 1–14. 10.1155/2014/536084
  • Norahmad, N. A., Mohd Abd Razak, M. R., Mohmad Misnan, N., Md Jelas, N. H., Sastu, U. R., Muhammad, A., Ho, T. C. D., Jusoh, B., Zolkifli, N. A., Thayan, R., Mat Ripen, A., Zainol, M., & Syed Mohamed, A. F. (2019). Effect of freeze-dried Carica papaya leaf juice on inflammatory cytokines production during dengue virus infection in AG129 mice. BMC Complementary and Alternative Medicine, 19(1), 1–13. 10.1186/s12906-019-2438-3
  • Nouchi, I., & Toyama, S. (1988). Nouchi88 effects of ozone and peroxyacetyl nitrate on polar lipids and fatty acids in leaves of morning glory and kidney bean. Plant Physiology, 87(3), 638–646. 10.1104/pp.87.3.638
  • Ohyashiki, T., Taka, M., & Mohri, T. (1985). The effects of ionic strength on the protein conformation and the fluidity of porcine intestinal brush border membranes. Fluorometric studies using N-[7-dimethylamino-4-methylcoumarinyl]maleimide and pyrene. Journal of Biological Chemistry, 260(11), 6857–6861.
  • Ourique, G. S., Vianna, J. F., Neto, J. X. L., Oliveira, J. I. N., Mauriz, P. W., Vasconcelos, M. S., Caetano, E. W. S., Freire, V. N., Albuquerque, E. L., & Fulco, U. L. (2016). A quantum chemistry investigation of a potential inhibitory drug against the dengue virus. RSC Advances, 6(61), 56562–56570. 10.1039/C6RA10121F
  • Pace, C. N., Fu, H., Lee Fryar, K., Landua, J., Trevino, S. R., Schell, D., Thurlkill, R. L., Imura, S., Scholtz, J. M., Gajiwala, K., Sevcik, J., Urbanikova, L., Myers, J. K., Takano, K., Hebert, E. J., Shirley, B. A., & Grimsley, G. R. (2014). Contribution of hydrogen bonds to protein stability. Protein Science, 23(5), 652–661. 10.1002/pro.2449
  • Patel, B., Longo, P., Miley, M. J., Montoya, M., Harris, E., & de Silva, A. M. (2017). Dissecting the human serum antibody response to secondary dengue virus infections. PLOS Neglected Tropical Diseases, 11(5), e0005554–15. 10.1371/journal.pntd.0005554
  • Paton, R. S., & Goodman, J. M. (2009). Hydrogen bonding and π-stacking: How reliable are force fields? A critical evaluation of force field descriptions of nonbonded interactions. Journal of Chemical Information and Modeling, 49(4), 944–955. 10.1021/ci900009f
  • Patra, M., Hyvönen, M. T., Falck, E., Sabouri-Ghomi, M., Vattulainen, I., & Karttunen, M. (2007). Long-range interactions and parallel scalability in molecular simulations. Computer Physics Communications, 176(1), 14–22. 10.1016/j.cpc.2006.07.017
  • Perera, S. D., Jayawardena, U. A., & Jayasinghe, C. D. (2018). Potential use of Euphorbia hirta for dengue: A systematic review of scientific evidence. Journal of Tropical Medicine, 2018, 1–9686. 10.1155/2018/2048530
  • Plumley, J. A., & Dannenberg, J. J. (2011). A comparison of the behavior of functional/basis set combinations for hydrogen-bonding in the water dimer with emphasis on basis set superposition error. Journal of Computational Chemistry, 32(8), 1519–1527. 10.1002/jcc.21729
  • Qing, X., Sun, N., Yeh, J., Yue, C., & Cai, J. (2014). Dengue fever and bone marrow myelofibrosis. Experimental and Molecular Pathology, 97(2), 208–210. 10.1016/j.yexmp.2014.07.004
  • Radhika, R., Shankar, R., Vijayakumar, S., & Kolandaivel, P. (2018). Role of 6-Mercaptopurine in the potential therapeutic targets DNA base pairs and G-quadruplex DNA: Insights from quantum chemical and molecular dynamics simulations. Journal of Biomolecular Structure and Dynamics, 36(6), 1369–1401. 10.1080/07391102.2017.1323013
  • Ramachandran, N. (1967). Conformation of polypeptides and proteins. Advances in Protein Chemistry, 23, 283–438. 10.1016/s0065-3233(08)60402-7
  • Rathore, A. S., Sarker, A., Devi, R., & Id, G. (2019). Designing antibody against highly conserved region of dengue envelope protein by in silico screening of scFv mutant library. PLoS One, 14(1), e0209576. 10.1371/journal.pone.0209576
  • Raut, R., Beesetti, H., Tyagi, P., Khanna, I., Jain, S. K., Jeankumar, V. U., Yogeeswari, P., Sriram, D., & Swaminathan, S. (2015). A small molecule inhibitor of dengue virus type 2 protease inhibits the replication of all four dengue virus serotypes in cell culture. Virology Journal, 12(1), 16–17. 10.1186/s12985-015-0248-x
  • Rey, A. (2003). Dengue virus envelope glycoprotein structure: New insight into its interactions during viral entry. Proceedings of the National Academy of Sciences of the United States of America., 100(12), 6899–6901. 10.1073/pnas.1332695100
  • Robertson, M. J., Tirado-Rives, J., & Jorgensen, W. L. (2015). Improved peptide and protein torsional energetics with the OPLS-AA force field. Journal of Chemical Theory and Computation, 11(7), 3499–3509. 10.1021/acs.jctc.5b00356
  • Roderick, E. H., & Haider, M. K. (2010, February). Hydrogen bonds in proteins: Role and strength. Encyclopedia of Life Sciences. Chichester: John Wiley & Sons, Ltd. doi:10.1002/9780470015902.a0003011.pub2
  • Ruggerone, P., Vargiu, A. V., Collu, F., Fischer, N., & Kandt, C. (2013). Molecular dynamics computer simulations of multidrug Rnd efflux pumps. Computational and Structural Biotechnology Journal, 5(6), e201302008. 10.5936/csbj.201302008
  • Rullmann, J. A. C., Bellido, M. N., & van Duijnen, P. T. (1989). The active site of papain. All-atom study of interactions with protein matrix and solvent. Journal of Molecular Biology, 206(1), 101–118. 10.1016/0022-2836(89)90527-5
  • Sabarinathan, R., Aishwarya, K., Sarani, R., Vaishnavi, M. K., & Sekar, K. (2011). Water-mediated ionic interactions in protein structures. Journal of Biosciences, 36(2), 253–263. 10.1007/s12038-011-9067-4
  • Sabetian, S., Nezafat, N., Dorosti, H., Zarei, M., & Ghasemi, Y. (2019). Exploring dengue proteome to design an effective epitope-based vaccine against dengue virus. Journal of Biomolecular Structure and Dynamics, 37(10), 2546–2563. 10.1080/07391102.2018.1491890
  • Saotome, T., Doret, M., Kulkarni, M., Yang, Y., Barthe, P., Kuroda, Y., & Roumestand, C. (2019). Folding of the Ig-like domain of the dengue virus envelope protein analyzed by high-hydrostatic-pressure NMR at a residue-level resolution. Biomolecules, 9(8), 309. 10.3390/biom9080309
  • Saravanan, K. M., & Selvaraj, S. (2017). Dihedral angle preferences of amino acid residues forming various non-local interactions in proteins. Journal of Biological Physics, 43(2), 265–278. 10.1007/s10867-017-9451-x
  • Selvaraman, N., Selvam, S. K., & Muthusamy, K. (2016). The binding mode prediction and similar ligand potency in the active site of vitamin D receptor with QM/MM interaction, MESP, and MD simulation. Chemical Biology & Drug Design, 88(2), 272–280. 10.1111/cbdd.12754
  • Shah, M., Wadood, A., Rahman, Z., & Husnain, T. (2013). Interaction and inhibition of dengue envelope glycoprotein with mammalian receptor DC-sign, an in-silico approach. PLoS One, 8(3), e59211–10. 10.1371/journal.pone.0059211
  • Sharma, A., & Pan, A. (2012). Identification of potential drug targets in Yersinia pestis using metabolic pathway analysis: MurE ligase as a case study. European Journal of Medicinal Chemistry, 57, 185–195. 10.1016/j.ejmech.2012.09.018
  • Shokhen, M., Khazanov, N., & Albeck, A. (2009). Challenging a paradigm: Theoretical calculations of the protonation state of the Cys25-His159 catalytic diad in free papain. Proteins: Structure, Function, and Bioinformatics, 77(4), 916–926. 10.1002/prot.22516
  • Simanjuntak, K., Simanjuntak, J. E., & Prasasty, V. D. (2017). Structure-based drug design of quercetin and its derivatives against HMGB1. Biomedical and Pharmacology Journal, 10(4), 1973–1982. 10.13005/bpj/1318
  • Simonelli, L., Pedotti, M., Beltramello, M., Livoti, E., Calzolai, L., Sallusto, F., Lanzavecchia, A., & Varani, L. (2013). Rational engineering of a human anti-dengue antibody through experimentally validated computational docking. PLoS One, 8(2), e55561. 10.1371/journal.pone.0055561
  • Singh, W., Karabencheva-Christova, T. G., Sparagano, O., Black, G. W., Petrov, P. Y., & Christov, C. Z. (2016). Dimerization and ligand binding in tyrosylprotein sulfotransferase-2 are influenced by molecular motions. RSC Advances, 6(22), 18542–18548. 10.1039/C6RA01899H
  • Svejgaard, E. (1986). Humoral antibody responses in the immunopathogenesis of dermatophytosis. Acta Dermato-Venereologica. Supplementum, 121, 85–91.
  • Tautermann, C. S., Seeliger, D., & Kriegl, J. M. (2015). What can we learn from molecular dynamics simulations for GPCR drug design? Computational and Structural Biotechnology Journal, 13, 111–121. 10.1016/j.csbj.2014.12.002
  • Tjaden, N. B., Thomas, S. M., Fischer, D., & Beierkuhnlein, C. (2013). Extrinsic incubation period of dengue: Knowledge, backlog, and applications of temperature dependence. PLoS Neglected Tropical Diseases, 7(6), e2207–5. 10.1371/journal.pntd.0002207
  • Tseng, Y.-T., Chang, F.-S., Chao, D.-Y., & Lian, I.-B. (2016). Re-model the relation of vector indices, meteorological factors and dengue fever. Journal of Tropical Diseases, 4(2), 4–11. 10.4172/2329-891X.1000200
  • Vaccaro, L., Koronakis, V., & Sansom, M. S. P. (2006). Flexibility in a drug transport accessory protein: Molecular dynamics simulations of MexA. Biophysical Journal, 91(2), 558–564. 10.1529/biophysj.105.080010
  • Vernet, T., Tessier, D. C., Chatellier, J., Plouffe, C., Lee, T. S., Thomas, D. Y., Storer, A. C., & Menard, R. (1995). Structural and functional roles of asparagine 175 in the cysteine protease papain. Journal of Biological Chemistry, 270(28), 16645–16652. 10.1074/jbc.270.28.16645
  • Vora, J., Patel, S., Athar, M., Sinha, S., Chhabria, M. T., Jha, P. C., & Shrivastava, N. (2019). Pharmacophore modeling, molecular docking and molecular dynamics simulation for screening and identifying anti-dengue phytocompounds. Journal of Biomolecular Structure and Dynamics, 1–15. 10.1080/07391102.2019.1615002
  • Wong, L. P., & AbuBakar, S. (2013). Health beliefs and practices related to dengue fever: A focus group study. PLoS Neglected Tropical Diseases, 7(7), e2310. 10.1371/journal.pntd.0002310
  • Xie, L., Li, J., Xie, L., & Bourne, P. E. (2009). Drug discovery using chemical systems biology: Identification of the protein-ligand binding network to explain the side effects of CETP inhibitors. PLoS Computational Biology, 5(5), e1000387. 10.1371/journal.pcbi.1000387
  • Xu, X., & Truhlar, D. G. (2011). Accuracy of effective core potentials and basis sets for density functional calculations, including relativistic effects, as illustrated by calculations on arsenic compounds. Journal of Chemical Theory and Computation, 7(9), 2766–2779. 10.1021/ct200234r
  • Ye, Y. H., Carrasco, A. M., Dong, Y., Sgrò, C. M., & McGraw, E. A. (2016). The effect of temperature on Wolbachia-mediated dengue virus blocking in Aedes aegypti. The American Journal of Tropical Medicine and Hygiene, 94(4), 812–819. 10.4269/ajtmh.15-0801
  • Zacharias, J., & Knapp, E. W. (2014). Protein secondary structure classification revisited: Processing DSSP information with PSSC. Journal of Chemical Information and Modeling, 54(7), 2166–2179. 10.1021/ci5000856
  • Zajc, T., Suban, D., Rajković, J., & Dolenc, I. (2011). Baculoviral expression and characterization of human recombinant PGCP in the form of an active mature dimer and an inactive precursor protein. Protein Expression and Purification, 75(2), 119–126. 10.1016/j.pep.2010.10.005
  • Zhang, Z., Benabbas, A., Ye, X., Yu, A., & Champion, P. M. (2015). Measurements of heme relaxation and ligand recombination in strong magnetic fields. Journal of Physical Chemistry B., 6(9), 790–795. 10.1016/j.pmrj.2014.02.014.Lumbar
  • Zhang, X., Jia, R., Shen, H., Wang, M., Yin, Z., & Cheng, A. (2017). Structures and functions of the envelope glycoprotein in flavivirus infections. Viruses, 9(11), 338–314. 10.3390/v9110338
  • Zhao, Y., & Truhlar, D. G. (2008). The M06 suite of density functionals for main group thermochemistry, thermochemical kinetics, noncovalent interactions, excited states, and transition elements: Two new functionals and systematic testing of four M06-class functionals and 12 other function. Theoretical Chemistry Accounts, 120(1–3), 215–241. 10.1007/s00214-007-0310-x

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.