308
Views
9
CrossRef citations to date
0
Altmetric
Research Articles

Unraveling the conformational dynamics of glycerol 3-phosphate dehydrogenase, a nicotinamide adenine dinucleotide-dependent enzyme of Leishmania mexicana

ORCID Icon, , ORCID Icon, ORCID Icon, ORCID Icon, ORCID Icon, & ORCID Icon show all
Pages 2044-2055 | Received 10 Jan 2020, Accepted 09 Mar 2020, Published online: 25 Mar 2020

References

  • Ahmad, E., Rabbani, G., Zaidi, N., Khan, M. A., Qadeer, A., Ishtikhar, M., Singh, S., Khan, R. H. (2013). Revisiting ligand-induced conformational changes in proteins: Essence, advancements, implications and future challenges. Journal of Biomolecular Structure and Dynamics, 31(6), 630–648. doi:10.1080/07391102.2012.706081
  • Alarcon, D. A., Nandi, M., Carpena, X., Fita, I., & Loewen, P. C. (2012). Structure of glycerol-3-phosphate dehydrogenase (GPD1) from Saccharomyces cerevisiae at 2.45 Å resolution. Acta Crystallographica Section F Structural Biology and Crystallization Communications, 68(11), 1279–1283. doi:10.1107/S1744309112037736
  • Andersen, H. C. (1983). Rattle: A “velocity” version of the shake algorithm for molecular dynamics calculations. Journal of Computational Physics, 52(1), 24–34. doi:10.1016/0021-9991(83)90014-1
  • Bayly, C. I., Cieplak, P., Cornell, W., & Kollman, P. A. (1993). A well-behaved electrostatic potential based method using charge restraints for deriving atomic charges: The RESP model. The Journal of Physical Chemistry, 97(40), 10269–10280. doi:10.1021/j100142a004
  • Belluti, F., Uliassi, E., Veronesi, G., Bergamini, C., Kaiser, M., Brun, R., Viola A., Fato R., Michels P. A., Krauth-Siegel R. L., Cavalli A., Bolognesi, M. L. (2014). Toward the development of dual-targeted glyceraldehyde-3-phosphate dehydrogenase/trypanothione reductase inhibitors against Trypanosoma brucei and Trypanosoma cruzi. ChemMedChem., 9(2), 371–382. doi:10.1002/cmdc.201300399
  • Brannigan, J. A., Smith, B. A., Yu, Z., Brzozowski, A. M., Hodgkinson, M. R., Maroof, A., Price, H. P., Meier, F., Leatherbarrow, R. J., Tate, E. W., Smith, D. F., Wilkinson, A. J. (2010). N-Myristoyltransferase from Leishmania donovani: Structural and functional characterisation of a potential drug target for visceral leishmaniasis. Journal of Molecular Biology, 396(4), 985–999. doi:10.1016/j.jmb.2009.12.032
  • Buurman, E. T., Laganas, V. A., Liu, C. F., & Manchester, J. I. (2012). Antimicrobial activity of adenine-based inhibitors of NAD + -dependent DNA ligase. ACS Medicinal Chemistry Letters, 3(8), 663–667. doi:10.1021/ml300169x
  • Câmara, A. S., & Horjales, E. (2018). Computer simulations reveal changes in the conformational space of the transcriptional regulator MosR upon the formation of a disulphide bond and in the collective motions that regulate its DNA-binding affinity. PLoS One, 13(2), e0192826. doi:10.1371/journal.pone.0192826
  • Carlson, H. A., & McCammon, J. A. (2000). Accommodating protein flexibility in computational drug design. Molecular Pharmacology, 57(2), 213–218. http://www.ncbi.nlm.nih.gov/pubmed/10648630
  • Case, D. A., Cheatham, T. E., Darden, T., Gohlke, H., Luo, R., Merz, K. M., Onufriev A., Simmerling C., Wang B., Woods, R. J. (2005). The amber biomolecular simulation programs. Journal of Computational Chemistry, 26(16), 1668–1688. doi:10.1002/jcc.20290
  • Chauhan, N., & Poddar, R. (2019). In silico pharmacophore modeling and simulation studies for searching potent antileishmanials targeted against Leishmania donovani nicotinamidase. Computational Biology and Chemistry, 83, 107150. doi:10.1016/j.compbiolchem.2019.107150
  • Choe, J., Guerra, D., Michels, P. A. M., & Hol, W. G. J. (2003). Leishmania mexicana glycerol-3-phosphate dehydrogenase showed conformational changes upon binding a bi-substrate adduct. Journal of Molecular Biology, 329(2), 335–349. doi:10.1016/S0022-2836(03)00421-2
  • Costa, C. H. S., Oliveira, A. R. S., dos Santos, A. M., da Costa, K. S., Lima, A. H. L. e., Alves, C. N., & Lameira, J. (2019). Computational study of conformational changes in human 3-hydroxy-3-methylglutaryl coenzyme reductase induced by substrate binding. Journal of Biomolecular Structure and Dynamics, 37(16), 4374–4383. doi:10.1080/07391102.2018.1549508
  • Cruz, M. C., Souza-Melo, N., da Silva, C. V., DaRocha, W. D., Bahia, D., Araújo, P. R., Teixeira, S. R., & Mortara, R. A. (2012). Trypanosoma cruzi: Role of δ-Amastin on extracellular amastigote cell invasion and differentiation. PLoS One., 7(12), e51804. doi:10.1371/journal.pone.0051804
  • Cui, Q., Sulea, T., Schrag, J. D., Munger, C., Hung, M.-N., Naïm, M., Cygler, M., & Purisima, E. O. (2008). Molecular dynamics—solvated interaction energy studies of protein–protein interactions: The MP1–p14 scaffolding complex. Journal of Molecular Biology, 379(4), 787–802. doi:10.1016/j.jmb.2008.04.035
  • da Costa, K. S., Galúcio, J. M. P., Leonardo, E. S., Cardoso, G., Leal, É., Conde, G., & Lameira, J. (2017). Structural and evolutionary analyses of Leishmania Alba proteins. Molecular and Biochemical Parasitology, 217, 23–31. doi:10.1016/j.molbiopara.2017.08.006
  • da Silva, M. F. L., Zampieri, R. A., Muxel, S. M., Beverley, S. M., & Floeter-Winter, L. M. (2012). Leishmania amazonensis arginase compartmentalization in the glycosome is important for parasite infectivity. PLoS One., 7(3), e34022. doi:10.1371/journal.pone.0034022
  • De Oliveira, O. V., Dos Santos, J. D., & Freitas, L. C. G. (2012). Molecular dynamics simulation of the gGAPDH-NAD + complex from Trypanosoma cruzi. Molecular Simulation, 38(13), 1124–1131. doi:10.1080/08927022.2012.696112
  • Felczak, K., Vince, R., & Pankiewicz, K. W. (2014). NAD-based inhibitors with anticancer potential. Bioorganic & Medicinal Chemistry Letters, 24(1), 332–336. doi:10.1016/j.bmcl.2013.11.005
  • Frisch, M. J., et al. (2009). Gaussian 09. Gaussian, Inc. Gaussian Inc. https://doi.org/111
  • Gabaldón, T., Ginger, M. L., & Michels, P. A. M. (2016). Peroxisomes in parasitic protists. Molecular and Biochemical Parasitology, 209(1-2), 35–45. doi:10.1016/j.molbiopara.2016.02.005
  • Genheden, S., & Ryde, U. (2015). The MM/PBSA and MM/GBSA methods to estimate ligand-binding affinities. Expert Opinion on Drug Discovery, 10(5), 449–461. doi:10.1517/17460441.2015.1032936
  • Gerwert, K., Freier, E., & Wolf, S. (2014). The role of protein-bound water molecules in microbial rhodopsins. Biochimica et Biophysica Acta (BBA) - Bioenergetics, 1837(5), 606–613. doi:10.1016/j.bbabio.2013.09.006
  • Giangreco, I., & Packer, M. J. (2013). Pharmacophore binding motifs for nicotinamide adenine dinucleotide analogues across multiple protein families: A detailed contact-based analysis of the interaction between proteins and NAD(P) cofactors. Journal of Medicinal Chemistry, 56(15), 6175–6189. doi:10.1021/jm400644z
  • Grant, B. J., Rodrigues, A. P. C., ElSawy, K. M., McCammon, J. A., & Caves, L. S. D. (2006). Bio3d: An R package for the comparative analysis of protein structures. Bioinformatics, 22(21), 2695–2696. doi:10.1093/bioinformatics/btl461
  • He, R., Reyes, A. C., Amyes, T. L., & Richard, J. P. (2018). Enzyme architecture: The role of a flexible loop in activation of glycerol-3-phosphate dehydrogenase for catalysis of hydride transfer. Biochemistry, 57(23), 3227–3236. doi:10.1021/acs.biochem.7b01282
  • Hestenes, M. R., & Stiefel, E. (1952). Methods of conjugate gradients for solving linear systems. Journal of Research of the National Bureau of Standards, 49(6), 409. doi:10.6028/jres.049.044
  • Hornak, V., Abel, R., Okur, A., Strockbine, B., Roitberg, A., & Simmerling, C. (2006). Comparison of multiple amber force fields and development of improved protein backbone parameters. Proteins: Structure, Function, and Bioinformatics, 65(3), 712–725. doi:10.1002/prot.21123
  • Hou, T., Wang, J., Li, Y., & Wang, W. (2011). Assessing the performance of the MM/PBSA and MM/GBSA methods. 1. The accuracy of binding free energy calculations based on molecular dynamics simulations. Journal of Chemical Information and Modeling, 51(1), 69–82. doi:10.1021/ci100275a
  • Jorgensen, W. L., Maxwell, D. S., & Tirado-Rives, J. (1996). Development and testing of the OPLS all-atom force field on conformational energetics and properties of organic liquids. Journal of the American Chemical Society, 118(45), 11225–11236. doi:10.1021/ja9621760
  • Khan, M. O. F. (2007). Trypanothione reductase: A viable chemotherapeutic target for antitrypanosomal and antileishmanial drug design. Drug Target Insights, 2, 117739280700200. doi:10.1177/117739280700200007
  • Knight, J. D. R., Hamelberg, D., McCammon, J. A., & Kothary, R. (2009). The role of conserved water molecules in the catalytic domain of protein kinases. Proteins: Structure, Function, and Bioinformatics, 76(3), 527–535. doi:10.1002/prot.22451
  • Kovářová, J., & Barrett, M. P. (2016). The pentose phosphate pathway in parasitic trypanosomatids. Trends in Parasitology, 32(8), 622–634. doi:10.1016/j.pt.2016.04.010
  • Kumari, P., & Poddar, R. (2019). A comparative multivariate analysis of nitrilase enzymes: An ensemble based computational approach. Computational Biology and Chemistry, 83, 107095. doi:10.1016/j.compbiolchem.2019.107095
  • Mandal, H., Vijayakumar, S., Yadav, S., Kumar Singh, S., & Das, P. (2019). Validation of NAD synthase inhibitors for inhibiting the cell viability of Leishmania donovani: In silico and in vitro approach. Journal of Biomolecular Structure and Dynamics, 37, 4481–4493. doi:10.1080/07391102.2018.1552199
  • Maugeri, D. A., Cazzulo, J. J., Burchmore, R. J. S., Barrett, M. P., & Ogbunude, P. O. J. (2003). Pentose phosphate metabolism in Leishmania mexicana. Molecular and Biochemical Parasitology, 130(2), 117–125. doi:10.1016/S0166-6851(03)00173-7
  • Moreno, M. A., Alonso, A., Alcolea, P. J., Abramov, A., de Lacoba, M. G., Abendroth, J., Zhang, S., Edwards, T., Lorimer, D., Myler, P. J., Larraga, V. (2014). Tyrosine aminotransferase from Leishmania infantum: A new drug target candidate. International Journal for Parasitology: Drugs and Drug Resistance, 4(3), 347–354. doi:10.1016/j.ijpddr.2014.06.001
  • Naderer, T., Heng, J., & McConville, M. J. (2010). Evidence that intracellular stages of Leishmania major utilize amino sugars as a major carbon source. PLoS Pathogens, 6(12), e1001245. doi:10.1371/journal.ppat.1001245
  • Nagle A. S., Khare S., Kumar A. B., Supek F., Buchynskyy A., Mathison C. J., Chennamaneni N. K., Pendem N., Buckner F. S., Gelb M. H., Molteni V. (2014). Recent developments in drug discovery for leishmaniasis and human African trypanosomiasis. Chemical Reviews, 114(22), 11305–11347. doi:10.1021/cr500365f
  • Naïm, M., Bhat, S., Rankin, K. N., Dennis, S., Chowdhury, S. F., Siddiqi, I., Drabik, P., Sulea, T., Bayly, C. I., Jakalian, A., & Purisima, E. O. (2007). Solvated Interaction Energy (SIE) for scoring protein-ligand binding affinities. 1. Exploring the parameter space. Journal of Chemical Information and Modeling, 47(1), 122–133. doi:10.1021/ci600406v
  • Neves Cruz, J., da Costa, K. S., de Carvalho, T. A. A., & de Alencar, N. A. N. (2020). Measuring the structural impact of mutations on cytochrome P450 21A2, the major steroid 21-hydroxylase related to congenital adrenal hyperplasia. Journal of Biomolecular Structure and Dynamics, 38, 1425-1434. doi:10.1080/07391102.2019.1607560
  • Ogungbe, I. V., Erwin, W. R., & Setzer, W. N. (2014). Antileishmanial phytochemical phenolics: Molecular docking to potential protein targets. Journal of Molecular Graphics and Modelling, 48, 105–117. doi:10.1016/j.jmgm.2013.12.010
  • Ogungbe, I. V., & Setzer, W. N. (2013). In-silico Leishmania target selectivity of antiparasitic terpenoids. Molecules, 18(7), 7761–7847. doi:10.3390/molecules18077761
  • Ou, X., Ji, C., Han, X., Zhao, X., Li, X., Mao, Y., Wong, L.-L., Bartlam, M., & Rao, Z. (2006). Crystal structures of human glycerol 3-phosphate dehydrogenase 1 (GPD1). Journal of Molecular Biology, 357(3), 858–869. doi:10.1016/j.jmb.2005.12.074
  • Passalacqua, T. G., Torres, F. A. E., Nogueira, C. T., de Almeida, L., Del Cistia, M. L., dos Santos, M. B., Dutra L. A., Bolzani V.S., Regasini L.O., Graminha M.A., Marchetto R., Zottis, A. (2015). The 2′,4′-dihydroxychalcone could be explored to develop new inhibitors against the glycerol-3-phosphate dehydrogenase from Leishmania species. Bioorganic & Medicinal Chemistry Letters, 25(17), 3564–3568. doi:10.1016/j.bmcl.2015.06.085
  • Rackham, M. D., Yu, Z., Brannigan, J. A., Heal, W. P., Paape, D., Barker, K. V., Wilkinson, A. J., Smith, D. F., Leatherbarrow, R. J., & Tate, E. W. (2015). Discovery of high affinity inhibitors of Leishmania donovani N-myristoyltransferase. MedChemComm, 6(10), 1761–1766. doi:10.1039/C5MD00241A
  • Reguer, R. M., Elmahallaw, E. K., Garcia-Estrada, C., Carbajo-Andres, R., & Balana-Fouce, R. (2018). DNA Topoisomerases of Leishmania parasites; druggable targets for drug discovery. Current Medicinal Chemistry, 26(32), 5900-5923. doi:10.2174/0929867325666180518074959
  • Reyes, A. C., Amyes, T. L., & Richard, J. P. (2016a). Enzyme architecture: A startling role for Asn270 in glycerol 3-phosphate dehydrogenase-catalyzed hydride transfer. Biochemistry, 55(10), 1429–1432. doi:10.1021/acs.biochem.6b00116
  • Reyes, A. C., Amyes, T. L., & Richard, J. P. (2016b). Enzyme architecture: Self-assembly of enzyme and substrate pieces of glycerol-3-phosphate dehydrogenase into a robust catalyst of hydride transfer. Journal of the American Chemical Society, 138(46), 15251–15259. doi:10.1021/jacs.6b09936
  • Ronin, C., Costa, D. M., Tavares, J., Faria, J., Ciesielski, F., Ciapetti, P., Smith, T. K., MacDougall, J., Cordeiro-da-Silva, A., & Pemberton, I. K. (2018). The crystal structure of the Leishmania infantum silent information regulator 2 related protein 1: Implications to protein function and drug design. PLoS One, 13(3), e0193602. doi:10.1371/journal.pone.0193602
  • Sahoo, G. C., Dikhit, M. R., Rani, M., Ansari, M. Y., Jha, C., Rana, S., & Das, P. (2013). Analysis of sequence, structure of GAPDH of Leishmania donovani and its interactions. Journal of Biomolecular Structure and Dynamics, 31(3), 258–275. doi:10.1080/07391102.2012.698189
  • Sittel, F., Jain, A., & Stock, G. (2014). Principal component analysis of molecular dynamics: On the use of Cartesian vs. internal coordinates. The Journal of Chemical Physics, 141(1), 014111. doi:10.1063/1.4885338
  • Škodová, I., Verner, Z., Bringaud, F., Fabian, P., Lukeš, J., & Horváth, A. (2013). Characterization of Two Mitochondrial Flavin Adenine Dinucleotide-Dependent Glycerol-3-Phosphate Dehydrogenases in Trypanosoma brucei. Eukaryotic Cell, 12(12), 1664–1673. doi:10.1128/EC.00152-13
  • Suresh, S., Bressi, J. C., Kennedy, K. J., Verlinde, C. L. M. J., Gelb, M. H., & Hol, W. G. J. (2001). Conformational changes in Leishmania mexicana glyceraldehyde-3-phosphate dehydrogenase induced by designed inhibitors. Journal of Molecular Biology, 309(2), 423–435. doi:10.1006/jmbi.2001.4588
  • Suresh, S., Turley, S., Opperdoes, F. R., Michels, P. A. M., & Hol, W. G. J. (2000). A potential target enzyme for trypanocidal drugs revealed by the crystal structure of NAD-dependent glycerol-3-phosphate dehydrogenase from Leishmania mexicana. Structure, 8(5), 541–552. doi:10.1016/S0969-2126(00)00135-0
  • Szöör, B., Haanstra, J. R., Gualdrón-López, M., & Michels, P. A. (2014). Evolution, dynamics and specialized functions of glycosomes in metabolism and development of trypanosomatids. Current Opinion in Microbiology, 22, 79–87. doi:10.1016/j.mib.2014.09.006
  • Wang, J., Wolf, R. M., Caldwell, J. W., Kollman, P. A., & Case, D. A. (2004). Development and testing of a general amber force field. Journal of Computational Chemistry, 25(9), 1157–1174. doi:10.1002/jcc.20035
  • Zhao, B., Guengerich, F. P., Voehler, M., & Waterman, M. R. (2005). Role of active site water molecules and substrate hydroxyl groups in oxygen activation by cytochrome P450 158A2. Journal of Biological Chemistry, 280(51), 42188–42197. doi:10.1074/jbc.M509220200
  • Zhao, Y., Li, X., Wang, F., Zhao, X., Gao, Y., Zhao, C., He, L., Li, Z., & Xu, J. (2018). Glycerol-3-phosphate dehydrogenase (GPDH) gene family in Zea mays L.: Identification, subcellular localization, and transcriptional responses to abiotic stresses. PLoS One, 13(7), e0200357. doi:10.1371/journal.pone.0200357

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.