183
Views
4
CrossRef citations to date
0
Altmetric
Research Articles

Comparative modeling and structure based drug repurposing of PAX2 transcription factor for targeting acquired chemoresistance in pancreatic ductal adenocarcinoma

, , &
Pages 2071-2078 | Received 17 Feb 2020, Accepted 10 Mar 2020, Published online: 25 Mar 2020

References

  • Adamska, A., Domenichini, A., & Falasca, M. (2017). Pancreatic ductal adenocarcinoma: Current and evolving therapies. International Journal of Molecular Sciences, 18.
  • Aier, I., Semwal, R., Dhara, A., Sen, N., & Varadwaj, P. K. (2019). An integrated epigenome and transcriptome analysis identifies PAX2 as a master regulator of drug resistance in high grade pancreatic ductal adenocarcinoma. PLoS One, 14(10), e0223554. doi:10.1371/journal.pone.0223554
  • Aier, I., Semwal, R., Sharma, A., & Varadwaj, P. K. (2019). A systematic assessment of statistics, risk factors, and underlying features involved in pancreatic cancer. Cancer Epidemiology, 58, 104–110. doi:10.1016/j.canep.2018.12.001
  • Allison, A. C., & Eugui, E. M. (2000). Mycophenolate mofetil and its mechanisms of action. Immunopharmacology, 47(2-3), 85–118. doi:10.1016/s0162-3109(00)00188-0
  • Aparicio, J., García-Mora, C., Martín, M., Petriz, M. L., Feliu, J., Sánchez-Santos, M. E., Ayuso, J. R., Fuster, D., Conill, C., & Maurel, J. (2014). A Phase I, Dose-Finding Study of Sorafenib in Combination with Gemcitabine and Radiation Therapy in Patients with Unresectable Pancreatic Adenocarcinoma: A Grupo Español Multidisciplinario en Cáncer Digestivo (GEMCAD) Study. PLoS One, 9(1), e82209. doi:10.1371/journal.pone.0082209
  • Asemissen, A. M., Haase, D., Stevanovic, S., Bauer, S., Busse, A., Thiel, E., Rammensee, H. G., Keilholz, U., & Scheibenbogen, C. (2009). Identification of an immunogenic HLA-A*0201-binding T-cell epitope of the transcription factor PAX2. Journal of Immunotherapy, 32(4), 370–375. doi:10.1097/CJI.0b013e31819d4e09
  • Atilgan, C., & Atilgan, A. R. (2009). Perturbation-response scanning reveals ligand entry-exit mechanisms of ferric binding protein. PLoS Computational Biology, 5(10), e1000544. doi:10.1371/journal.pcbi.1000544
  • Awasthi, N., Zhang, C., Hinz, S., Schwarz, M. A., & Schwarz, R. E. (2013). Enhancing sorafenib-mediated sensitization to gemcitabine in experimental pancreatic cancer through EMAP II. Journal of Experimental & Clinical Cancer Research, 32(1), 12. doi:10.1186/1756-9966-32-12
  • Bopp, D., Burri, M., Baumgartner, S., Frigerio, G., & Noll, M. (1986). Conservation of a large protein domain in the segmentation gene paired and in functionally related genes of Drosophila. Cell, 47(6), 1033–1040. doi:10.1016/0092-8674(86)90818-4
  • Bowers, K. J., Chow, D. E., Xu, H., Dror, R. O., Eastwood, M. P., Gregersen, B. A., Klepeis, J. L., Kolossvary, I., Moraes, M. A., & Sacerdoti, F. D. (2006). Scalable algorithms for molecular dynamics simulations on commodity clusters. SC’06: Proceedings of the 2006 ACM/IEEE Conference on Supercomputing, Tampa, Florida, IEEE. doi:10.1145/1188455.1188544
  • Chi, N., & Epstein, J. A. (2002). Getting your Pax straight: Pax proteins in development and disease. Trends in Genetics, 18(1), 41–47. doi:10.1016/S0168-9525(01)02594-X
  • Dominguez, C., Boelens, R., & Bonvin, A. M. (2003). HADDOCK: A protein-protein docking approach based on biochemical or biophysical information. Journal of the American Chemical Society, 125(7), 1731–1737. doi:10.1021/ja026939x
  • Garvie, C. W., Hagman, J., & Wolberger, C. (2001). Structural studies of Ets-1/Pax5 complex formation on DNA. Molecular Cell, 8(6), 1267–1276. doi:10.1016/S1097-2765(01)00410-5
  • Grimley, E., Liao, C., Ranghini, E. J., Nikolovska-Coleska, Z., & Dressler, G. R. (2017). Inhibition of Pax2 transcription activation with a small molecule that targets the DNA binding domain. ACS Chemical Biology, 12(3), 724–734. doi:10.1021/acschembio.6b00782
  • Hagmann, W., Faissner, R., Schnolzer, M., Lohr, M., & Jesnowski, R. (2010). Membrane drug transporters and chemoresistance in human pancreatic carcinoma. Cancers, 3(1), 106–125. doi:10.3390/cancers3010106
  • Hagmann, W., Jesnowski, R., & Lohr, J. M. (2010). Interdependence of gemcitabine treatment, transporter expression, and resistance in human pancreatic carcinoma cells. Neoplasia, 12(9), 740–747. doi:10.1593/neo.10576
  • Halgren, T. A. (2009). Identifying and characterizing binding sites and assessing druggability. Journal of Chemical Information and Modeling, 49(2), 377–389. doi:10.1021/ci800324m
  • Jacobson, M. P., Pincus, D. L., Rapp, C. S., Day, T. J., Honig, B., Shaw, D. E., & Friesner, R. A. (2004). A hierarchical approach to all-atom protein loop prediction. Proteins: Structure, Function, and Bioinformatics, 55(2), 351–367. doi:10.1002/prot.10613
  • Johnson, D. S., Mortazavi, A., Myers, R. M., & Wold, B. (2007). Genome-wide mapping of in vivo protein-DNA interactions. Science, 316(5830), 1497–1502. doi:10.1126/science.1141319
  • Konig, J., Hartel, M., Nies, A. T., Martignoni, M. E., Guo, J., Buchler, M. W., Friess, H., & Keppler, D. (2005). Expression and localization of human multidrug resistance protein (ABCC) family members in pancreatic carcinoma. International Journal of Cancer, 115, 359–367. doi:10.1002/ijc.20831
  • Lang, D., Powell, S. K., Plummer, R. S., Young, K. P., & Ruggeri, B. A. (2007). PAX genes: Roles in development, pathophysiology, and cancer. Biochemical Pharmacology, 73(1), 1–14. doi:10.1016/j.bcp.2006.06.024
  • Laskowski, R. A., MacArthur, M. W., Moss, D. S., & Thornton, J. M. (1993). PROCHECK: A program to check the stereochemical quality of protein structures. Journal of Applied Crystallography, 26(2), 283–291. doi:10.1107/S0021889892009944
  • Lowenfels, A. B., & Maisonneuve, P. (2006). Epidemiology and risk factors for pancreatic cancer. Best Practice & Research Clinical Gastroenterology, 20(2), 197–209. doi:10.1016/j.bpg.2005.10.001
  • Nambaru, P. K., Hubner, T., Kock, K., Mews, S., Grube, M., Payen, L., Guitton, J., Sendler, M., Jedlitschky, G., Rimmbach, C., Rosskopf, D., Kowalczyk, D. W., Kroemer, H. K., Weiss, F. U., Mayerle, J., Lerch, M. M., & Ritter, C. A. (2011). Drug efflux transporter multidrug resistance-associated protein 5 affects sensitivity of pancreatic cancer cell lines to the nucleoside anticancer drug 5-fluorouracil. Drug Metabolism and Disposition, 39(1), 132–139. doi:10.1124/dmd.110.033613
  • Oguri, T., Achiwa, H., Sato, S., Bessho, Y., Takano, Y., Miyazaki, M., Muramatsu, H., Maeda, H., Niimi, T., & Ueda, R. (2006). The determinants of sensitivity and acquired resistance to gemcitabine differ in non-small cell lung cancer: A role of ABCC5 in gemcitabine sensitivity. Molecular Cancer Therapeutics, 5(7), 1800–1806. doi:10.1158/1535-7163.MCT-06-0025
  • Pratt, S., Shepard, R. L., Kandasamy, R. A., Johnston, P. A., Perry, W., III, & Dantzig, A. H. (2005). The multidrug resistance protein 5 (ABCC5) confers resistance to 5-fluorouracil and transports its monophosphorylated metabolites. Molecular Cancer Therapeutics, 4(5), 855–863. doi:10.1158/1535-7163.MCT-04-0291
  • Pushpakom, S., Iorio, F., Eyers, P. A., Escott, K. J., Hopper, S., Wells, A., Doig, A., Guilliams, T., Latimer, J., McNamee, C., Norris, A., Sanseau, P., Cavalla, D., & Pirmohamed, M. (2019). Drug repurposing: Progress, challenges and recommendations. Nature Reviews Drug Discovery, 18(1), 41–58. doi:10.1038/nrd.2018.168
  • Siegel, R. L., Miller, K. D., & Jemal, A. (2019). Cancer statistics, 2019. CA: A Cancer Journal for Clinicians, 69(1), 7–34. doi:10.3322/caac.21551
  • The UniProt Consortium. (2019). UniProt: A worldwide hub of protein knowledge. Nucleic Acids Research, 47, D506–D515.
  • van Dijk, M., & Bonvin, A. M. (2009). 3D-DART: A DNA structure modelling server. Nucleic Acids Research, 37(Web Server), W235–239. doi:10.1093/nar/gkp287
  • Wang, Q., Fang, W. H., Krupinski, J., Kumar, S., Slevin, M., & Kumar, P. (2008). Pax genes in embryogenesis and oncogenesis. Journal of Cellular and Molecular Medicine, 12(6a), 2281–2294. doi:10.1111/j.1582-4934.2008.00427.x
  • Wiederstein, M., & Sippl, M. J. (2007). ProSA-web: Interactive web service for the recognition of errors in three-dimensional structures of proteins. Nucleic Acids Research, 35(Web Server), W407–W410. doi:10.1093/nar/gkm290
  • Xu, H. E., Rould, M. A., Xu, W., Epstein, J. A., Maas, R. L., & Pabo, C. O. (1999). Crystal structure of the human Pax6 paired domain-DNA complex reveals specific roles for the linker region and carboxy-terminal subdomain in DNA binding. Genes & Development, 13(10), 1263–1275. doi:10.1101/gad.13.10.1263
  • Zelcer, N., Saeki, T., Reid, G., Beijnen, J. H., & Borst, P. (2001). Characterization of drug transport by the human multidrug resistance protein 3 (ABCC3). Journal of Biological Chemistry, 276(49), 46400–46407. doi:10.1074/jbc.M107041200

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.