443
Views
15
CrossRef citations to date
0
Altmetric
Research Articles

Molecular docking and molecular dynamics simulations of a mutant Acinetobacter haemolyticus alkaline-stable lipase against tributyrin

, ORCID Icon, ORCID Icon, , , & show all
Pages 2079-2091 | Received 16 Jan 2020, Accepted 11 Mar 2020, Published online: 23 Mar 2020

References

  • Abdul Manan, F. M., Attan, N., Widodo, N., Aboul-Enein, H. Y., & Wahab, R. A. (2018). Rhizomucor miehei lipase immobilized on reinforced chitosan–chitin nanowhiskers support for synthesis of eugenyl benzoate. Preparative Biochemistry and Biotechnology, 48(1), 92–102. doi:10.1080/10826068.2017.1405021
  • Adamu, A., Wahab, R. A., Shamsir, M. S., Aliyu, F., & Huyop, F. (2017). Deciphering the catalytic amino acid residues of l-2-haloacid dehalogenase (Dehl) from Rhizobium sp. RC1: An in silico analysis. Computational Biology and Chemistry, 70, 125–132. doi:10.1016/j.compbiolchem.2017.08.007
  • Agobo, K., Arazu, V., Uzo, K., & Igwe, C. (2017). Microbial lipases: A prospect for biotechnological industrial catalysis for green products: A review. Fermentation Technology, 6(144), 2.
  • Andrusier, N., Mashiach, E., Nussinov, R., & Wolfson, H. J. (2008). Principles of flexible protein–protein docking. Proteins: Structure, Function, and Bioinformatics, 73(2), 271–289. doi:10.1002/prot.22170
  • Anuar, N. F. S. K., Wahab, R. A., Huyop, F., Halim, K. B. A., & Hamid, A. A. A. (2019). In silico Mutation on a mutant lipase from Acinetobacter Haemolyticus towards enhancing alkaline stability. Journal of Biomolecular Structure and Dynamics, 1–15. doi:10.1080/07391102.2019.1683074
  • Batumalaie, K., Edbeib, M. F., Mahat, N. A., Huyop, F., & Wahab, R. A. (2018a). In silico and empirical approaches toward understanding the structural adaptation of the alkaline-stable lipase Kv1 from Acinetobacter haemolyticus. Journal of Biomolecular Structure and Dynamics, 36(12), 3077–3093. doi:10.1080/07391102.2017.1377635
  • Batumalaie, K., Khalili, E., Mahat, N. A., Huyop, F. Z., & Wahab, R. A. (2018c). A statistical approach for optimizing the protocol for overexpressing lipase Kv1 in Escherichia coli: Purification and characterization. Biotechnology & Biotechnological Equipment, 32(1), 69–87. doi:10.1080/13102818.2017.1407670
  • Batumalaie, K., Khalili, E., Mahat, N. A., Huyop, F., & Wahab, R. A. (2018b). Biophysical characterization of a recombinant lipase Kv1 from Acinetobacter haemolyticus in relation to Ph and temperature. Biochimie, 152, 198–210. doi:10.1016/j.biochi.2018.07.011
  • Batumalaie, K., Mahat, N. A., Edbeib, M. F., Huyop, F. Z., & Wahab, R. A. (2018d). Characterization of a novel alkaline-stable lipase from Acinetobacter haemolyticus Kv1 isolated from an oil palm mill effluent. Malaysian Journal of Microbiology, 14(7), 640–654.
  • Batumalaie, K., Mahat, N. A., Huyop, F., & Wahab, R. A. (2018e). Biochemical and in Silico assessments of an Acinetobacter haemolyticus lipase Kv1 isolated from an oil palm mill effluent. Malaysian Applied Biology Journal, 47(3), 59–69.
  • Boran, R. (2018). Detergent compatible extracellular lipase from streptomyces cellulosae Au‐10: A green alternative for the detergent industry. Journal of Surfactants and Detergents, 21(4), 565–573. doi:10.1002/jsde.12049
  • Brogan, A. P., Sharma, K. P., Perriman, A. W., & Mann, S. (2014). Enzyme activity in liquid lipase melts as a step towards solvent-free biology at 150 C. Nature Communications, 5(1), 5058. doi:10.1038/ncomms6058
  • Chen, D., Oezguen, N., Urvil, P., Ferguson, C., Dann, S. M., & Savidge, T. C. (2016). Regulation of protein-ligand binding affinity by hydrogen bond pairing. Science Advances, 2(3), e1501240. doi:10.1126/sciadv.1501240
  • Czeleń, P. (2017). Inhibition mechanism of Cdk-2 and Gsk-3β by a sulfamoylphenyl derivative of indoline—A molecular dynamics study. Journal of Molecular Modeling, 23(8), 230. doi:10.1007/s00894-017-3395-8
  • Dong, Y-w., Liao, M-l., Meng, X-l., & Somero, G. N. (2018). Structural flexibility and protein adaptation to temperature: Molecular dynamics analysis of malate dehydrogenases of marine molluscs. Proceedings of the National Academy of Sciences, 115(6), 1274–1279. doi:10.1073/pnas.1718910115
  • Elias, N., Chandren, S., Attan, N., Mahat, N. A., Razak, F. I. A., Jamalis, J., & Wahab, R. A. (2017). Structure and properties of oil palm-based nanocellulose reinforced chitosan nanocomposite for efficient synthesis of butyl butyrate. Carbohydrate Polymers, 176, 281–292. doi:10.1016/j.carbpol.2017.08.097
  • Elokely, K. M., & Doerksen, R. J. (2013). Docking challenge: Protein sampling and molecular docking performance. Journal of Chemical Information and Modeling, 53(8), 1934–1945. doi:10.1021/ci400040d
  • Evander Emeltan Tjoa, S., Maria Vianney, Y., & Emantoko Dwi Putra, S. (2019). In silico mutagenesis: Decreasing the immunogenicity of botulinum toxin type A. Journal of Biomolecular Structure and Dynamics, 37(3), 1-39. doi:10.1080/07391102.2018.1559100
  • Fu, Y., Zhao, J., & Chen, Z. (2018). Insights into the molecular mechanisms of protein-ligand interactions by molecular docking and molecular dynamics simulation: A case of oligopeptide binding protein. Computational and Mathematical Methods in Medicine, 2018, 1–12. doi:10.1155/2018/3502514
  • Gao, Y., Mei, Y., & Zhang, J. Z. (2015). Chapter 5: Treatment of hydrogen bonds in protein simulations. In Advanced materials for renewable hydrogen production, storage and utilization (p. 121).
  • Houston, D. R., & Walkinshaw, M. D. (2013). Consensus docking: Improving the reliability of docking in a virtual screening context. Journal of Chemical Information and Modeling, 53(2), 384–390. doi:10.1021/ci300399w
  • Isah, A. A., Mahat, N. A., Jamalis, J., Attan, N., Zakaria, I. I., Huyop, F., & Wahab, R. A. (2017). Synthesis of geranyl propionate in a solvent-free medium using Rhizomucor miehei lipase covalently immobilized on chitosan–graphene oxide beads. Preparative Biochemistry and Biotechnology, 47(2), 199–210. doi:10.1080/10826068.2016.1201681
  • Ishak, S. N. H., Masomian, M., Kamarudin, N. H. A., Ali, M. S. M., Leow, T. C., & Rahman, R. N. Z. R. A. (2019). Changes of thermostability, organic solvent, and Ph stability in Geobacillus zalihae Ht1 and its mutant by calcium ion. International Journal of Molecular Sciences, 20(10), 2561. doi:10.3390/ijms20102561
  • Junaid, M., Muhseen, Z. T., Ullah, A., Wadood, A., Liu, J., & Zhang, H. (2014). Molecular modeling and molecular dynamics simulation study of the human Rab9 and Rhobtb3 C-terminus complex. Bioinformation, 10(12), 757–763. doi:10.6026/97320630010757
  • Kalathiya, U., Padariya, M., & Baginski, M. (2019). Structural, functional, and stability change predictions in human telomerase upon specific point mutations. Scientific Reports, 9(1), 8707. doi:10.1038/s41598-019-45206-y
  • Kamarudin, N. H. A., Rahman, R. N. Z. R. A., Ali, M. S. M., Leow, T. C., Basri, M., & Salleh, A. B. (2014). Unscrambling the effect of C-terminal tail deletion on the stability of a cold-adapted, organic solvent stable lipase from Staphylococcus epidermidis At2. Molecular Biotechnology, 56(8), 747–757. doi:10.1007/s12033-014-9753-1
  • Kovacic, F., Mandrysch, A., Poojari, C., Strodel, B., & Jaeger, K.-E. (2016). Structural features determining thermal adaptation of esterases. Protein Engineering Design and Selection, 29(2), 65–76. doi:10.1093/protein/gzv061
  • Koziara, K. B., Stroet, M., Malde, A. K., & Mark, A. E. (2014). Testing and validation of the automated topology builder (Atb) version 2.0: Prediction of hydration free enthalpies. Journal of Computer-Aided Molecular Design, 28(3), 221–233. doi:10.1007/s10822-014-9713-7
  • Kumar, C. V., Swetha, R. G., Anbarasu, A., & Ramaiah, S. (2014). Computational analysis reveals the association of threonine 118 methionine mutation in Pmp22 resulting in Cmt-1a. Advances in Bioinformatics, 2014, 1–10. doi:10.1155/2014/502618
  • Kumari, R., Kumar, R., Consortium, O. S. D. D., & Lynn, A. (2014). G_Mmpbsa  a gromacs tool for high-throughput Mm-PBSA calculations. Journal of Chemical Information and Modeling, 54(7), 1951–1962. doi:10.1021/ci500020m
  • Liao, K. H., Chen, K.-B., Lee, W.-Y., Sun, M.-F., Lee, C.-C., & Chen, C. Y.-C. (2014). Ligand-based and structure-based investigation for Alzheimer’s disease from traditional Chinese medicine. Evidence-Based Complementary and Alternative Medicine, 2014, 1–16. doi:10.1155/2014/364819
  • Lindahl, E., Hess, B., & Van Der Spoel, D. (2001). Gromacs 3.0: A package for molecular simulation and trajectory analysis. Journal of Molecular Modeling, 7(8), 306–317. doi:10.1007/s008940100045
  • Lobanov, M. Y., Bogatyreva, N., & Galzitskaya, O. (2008). Radius of gyration as an indicator of protein structure compactness. Molecular Biology, 42(4), 623–628. doi:10.1134/S0026893308040195
  • Malde, A. K., Zuo, L., Breeze, M., Stroet, M., Poger, D., Nair, P. C., Oostenbrink, C., & Mark, A. E. (2011). An automated force field topology builder (Atb) and repository: Version 1.0. Journal of Chemical Theory and Computation, 7(12), 4026–4037. doi:10.1021/ct200196m
  • Manan, F. M. A., Attan, N., Zakaria, Z., Mahat, N. A., & Wahab, R. A. (2018). Insight into the Rhizomucor miehei lipase supported on chitosan-chitin nanowhiskers assisted esterification of eugenol to eugenyl benzoate. Journal of Biotechnology, 280, 19–30. doi:10.1016/j.jbiotec.2018.05.015
  • Marimuthu, P., & Singaravelu, K. (2019). Unraveling the molecular mechanism of benzothiophene and benzofuran scaffold-merged compounds binding to anti-apoptotic myeloid cell leukemia 1. Journal of Biomolecular Structure and Dynamics, 37(8), 1992–2003. doi:10.1080/07391102.2018.1474805
  • Mishra, R., Mazumder, A., Mazumder, R., Mishra, P. S., & Chaudhary, P. (2019). Docking study and result conclusion of heterocyclic derivatives having urea and acyl moiety. Asian Journal of Biomedical and Pharmaceutical Sciences, 9(67), 13. doi:10.35841/2249-622X.67.19-082
  • Mohamad, N., Huyop, F., Aboul-Enein, H. Y., Mahat, N. A., & Wahab, R. A. (2015). Response surface methodological approach for optimizing production of geranyl propionate catalysed by carbon nanotubes nanobioconjugates. Biotechnology & Biotechnological Equipment, 29(4), 732–739. doi:10.1080/13102818.2015.1034177
  • Mohammadi, M., Sepehrizadeh, Z., Ebrahim-Habibi, A., Shahverdi, A. R., Faramarzi, M. A., & Setayesh, N. (2016). Enhancing activity and thermostability of lipase a from Serratia marcescens by site-directed mutagenesis. Enzyme and Microbial Technology, 93, 18–28. doi:10.1016/j.enzmictec.2016.07.006
  • Nemaysh, V., & Luthra, P. M. (2017). Computational analysis revealing that K634 and T681 mutations modulate the 3d-structure of Pdgfr-Β and lead to sunitinib resistance. RSC Advances, 7(60), 37612–37626. doi:10.1039/C7RA01305A
  • Onoja, E., Chandren, S., Razak, F. I. A., & Wahab, R. A. (2018a). Enzymatic synthesis of butyl butyrate by Candida rugosa lipase supported on magnetized-nanosilica from oil palm leaves: Process optimization, kinetic and thermodynamic study. Journal of the Taiwan Institute of Chemical Engineers, 91, 105–118. doi:10.1016/j.jtice.2018.05.049
  • Onoja, E., Chandren, S., Razak, F. I. A., & Wahab, R. A. (2018b). Extraction of nanosilica from oil palm leaves and its application as support for lipase immobilization. Journal of Biotechnology, 283, 81–96. doi:10.1016/j.jbiotec.2018.07.036
  • Pandey, B., Grover, A., & Sharma, P. (2018). Molecular dynamics simulations revealed structural differences among WRKY domain-DNA interaction in barley (Hordeum vulgare). BMC Genomics., 19(1), 132. doi:10.1186/s12864-018-4506-3
  • Rahman, I. N. A., Attan, N., Mahat, N. A., Jamalis, J., Keyon, A. S. A., Kurniawan, C., & Wahab, R. A. (2018). Statistical optimization and operational stability of Rhizomucor miehei lipase supported on magnetic chitosan/chitin nanoparticles for synthesis of pentyl valerate. International Journal of Biological Macromolecules, 115, 680–695. doi:10.1016/j.ijbiomac.2018.04.111
  • Rigoldi, F., Donini, S., Redaelli, A., Parisini, E., & Gautieri, A. (2018). Engineering of thermostable enzymes for industrial applications. APL Bioengineering, 2(1), 011501. doi:10.1063/1.4997367
  • Sani, H. A., Shariff, F. M., Rahman, R. N. Z. R. A., Leow, T. C., & Salleh, A. B. (2018). The effects of one amino acid substitutions at the C-terminal region of thermostable L2 lipase by computational and experimental approach. Molecular Biotechnology, 60(1), 1–11. doi:10.1007/s12033-017-0038-3
  • Shesham, R. D., Bartolotti, L. J., & Li, Y. (2008). Molecular dynamics simulation studies on Ca2+-induced conformational changes of annexin I. Protein Engineering Design and Selection, 21(2), 115–120. doi:10.1093/protein/gzm094
  • Singh, A., Das, M., & Grover, A. (2019). Molecular mechanism of acetoacetyl-coa enhanced kinetics for increased bioplastic production from Cupriavidus necator 428. Journal of Biomolecular Structure and Dynamics, 38(3), 827–840. 14 doi:10.1080/07391102.2019.1590239
  • Snijder, H., Van Eerde, J., Kingma, R., Kalk, K., Dekker, N., Egmond, M., & Dijkstra, B. (2001). Structural investigations of the active‐site mutant Asn156ala of outer membrane phospholipase A: Function of the Asn–His interaction in the catalytic triad. Protein Science, 10(10), 1962–1969. doi:10.1110/ps.17701
  • Sulong, M. R., Leow, T., Rahman, R., Basri, M., & Salleh, A. B. (2015). Enhancing thermostability of maltogenic amylase from Geobacillus sp. Sk70 by single amino acid substitution. International Journal of New Technologies in Science and Engineering, 2(3), 2349.
  • Veeramachaneni, G. K., Raj, K. K., Chalasani, L. M., Annamraju, S. K., Js, B., & Talluri, V. R. (2015). Shape based virtual screening and molecular docking towards designing novel pancreatic lipase inhibitors. Bioinformation, 11(12), 535. doi:10.6026/97320630011535
  • Wahab, R. A., Basri, M., Rahman, M. B. A., Rahman, R. N. Z. R. A., Salleh, A. B., & Chor, L. T. (2012). Engineering catalytic efficiency of thermophilic lipase from Geobacillus zalihae by hydrophobic residue mutation near the catalytic pocket. Advances in Bioscience and Biotechnology. 3(2), 158-167.doi:10.4236/abb.2012.32024
  • Wahab, R. A., Basri, M., Rahman, R. N. Z. R. A., Salleh, A. B., Rahman, M. B. A., & Leow, T. C. (2015). Development of a catalytically stable and efficient lipase through an increase in hydrophobicity of the oxyanion residue. Journal of Molecular Catalysis B: Enzymatic, 122, 282–288. doi:10.1016/j.molcatb.2015.10.003
  • Wahab, R. A., Basri, M., Rahman, R. N. Z. R. A., Salleh, A. B., Rahman, M. B. A., & Leow, T. C. (2016). Facile modulation of enantioselectivity of thermophilic Geobacillus zalihae lipase by regulating hydrophobicity of its Q114 oxyanion. Enzyme and Microbial Technology, 93, 174–181. doi:10.1016/j.enzmictec.2016.08.020
  • Wang, Z., Sun, H., Yao, X., Li, D., Xu, L., Li, Y., Tian, S., & Hou, T. (2016). Comprehensive evaluation of ten docking programs on a diverse set of protein–ligand complexes: The prediction accuracy of sampling power and scoring power. Physical Chemistry Chemical Physics, 18(18), 12964–12975.
  • Widowati, E., Utami, R., Mahadjoeno, E., & Saputro, G. (2017). Effect of temperature and Ph on polygalacturonase production by pectinolytic bacteria Bacillus licheniformis strain Gd2a in submerged medium from Raja Nangka (Musa Paradisiaca Var. Formatypica) banana peel waste [Paper presentation]. Paper Presented at the IOP Conference Series: Materials Science and Engineering. doi:10.1088/1757-899X/193/1/012018
  • Yaacob, N., Kamarudin, N. H. A., Leow, A. T. C., Salleh, A. B., Rahman, R. N. Z. R. A., & Ali, M. S. M. (2019). Effects of Lid 1 mutagenesis on lid displacement, catalytic performances and thermostability of cold-active Pseudomonas Ams8 lipase in toluene. Computational and Structural Biotechnology Journal, 17, 215–228. doi:10.1016/j.csbj.2019.01.005

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.