647
Views
13
CrossRef citations to date
0
Altmetric
Research Articles

Antimicrobial activity of ginger on cariogenic bacteria: molecular networking and molecular docking analyses

ORCID Icon & ORCID Icon
Pages 2164-2175 | Received 24 Feb 2020, Accepted 16 Mar 2020, Published online: 28 Mar 2020

References

  • Abbas-Mohammadi, M., Moridi Farimani, M., Salehi, P., Nejad Ebrahimi, S., Sonboli, A., Kelso, C., & Skropeta, D. (2018). Acetylcholinesterase-inhibitory activity of Iranian plants: Combined HPLC/bioassay-guided fractionation, molecular networking and docking strategies for the dereplication of active compounds. Journal of Pharmaceutical and Biomedical Analysis, 158, 471–479. doi:10.1016/j.jpba.2018.06.026
  • Al-Daihan, S., Al-Faham, M., Al-Shawi, N., Almayman, R., Brnawi, A., Zargar, S., & Bhat, R. s. (2013). Antibacterial activity and phytochemical screening of some medicinal plants commonly used in Saudi Arabia against selected pathogenic microorganisms. Journal of King Saud University - Science, 25(2), 115–120. doi:10.1016/j.jksus.2012.11.003
  • Al-Duboni, G., Osman, M. T., & Al-Naggar, R. (2013). Antimicrobial activity of aqueous extracts of cinnamon and ginger on two oral pathogens causing dental caries. Research Journal of Pharmaceutical, Biological and Chemical Sciences, 4, 957–965.
  • Ali, B. H., Blunden, G., Tanira, M. O., & Nemmar, A. (2008). Some phytochemical, pharmacological and toxicological properties of ginger (Zingiber officinale Roscoe): a review of recent research. Food and Chemical Toxicology : An International Journal Published for the British Industrial Biological Research Association, 46(2), 409–420. doi:10.1016/j.fct.2007.09.085
  • Azizi, A., Aghayan, S., Zaker, S., Shakeri, M., Entezari, N., & Lawaf, S. (2015). In vitro effect of zingiber officinale extract on growth of Streptococcus mutans and Streptococcus sanguinis. International Journal of Dentistry, 2015, 1–5. 2015. doi:10.1155/2015/489842
  • Bakiri, A., Hubert, J., Reynaud, R., Lanthony, S., Harakat, D., Renault, J.-H., & Nuzillard, J.-M. (2017). Computer-Aided 13C NMR Chemical Profiling of Crude Natural Extracts without Fractionation. Journal of Natural Products, 80(5), 1387–1396. doi:10.1021/acs.jnatprod.6b01063
  • Casamassimo, P. S., Thikkurissy, S., Edelstein, B. L., & Maiorini, E. (2009). Beyond the dmft: The human and economic cost of early childhood caries. Journal of the American Dental Association (1939)), 140(6), 650–657. doi:10.14219/jada.archive.2009.0250
  • Chaieb, K., Kouidhi, B., Jrah, H., Mahdouani, K., & Bakhrouf, A. (2011). Antibacterial activity of Thymoquinone, an active principle of Nigella sativa and its potency to prevent bacterial biofilm formation. BMC Complementary and Alternative Medicine, 11, 29doi:10.1186/1472-6882-11-29
  • Chervin, J., Stierhof, M., Tong, M. H., Peace, D., Hansen, K. Ø., Urgast, D. S., Andersen, J. H., Yu, Y., Ebel, R., Kyeremeh, K., Paget, V., Cimpan, G., Wyk, A. V., Deng, H., Jaspars, M., & Tabudravu, J. N. (2017). Targeted Dereplication of Microbial Natural Products by High-Resolution MS and Predicted LC Retention Time. J. Nat. Prod, 80(5), 1370–1377. doi:10.1021/acs.jnatprod.6b01035
  • Farimani, M. M., Abbas-Mohammadi, M., Esmaeili, M.-A., Salehi, P., Nejad-Ebrahimi, S., Sonboli, A., & Hamburger, M. (2015). Seco-ursane-type triterpenoids from Salvia urmiensis with apoptosis-inducing activity. Planta Medica, 81(14), 1290–1295. doi:10.1055/s-0035-1546256
  • Gull, I., Saeed, M., Shaukat, H., Aslam, S. M., Samra, Z. Q., & Athar, A. M. (2012). Inhibitory effect of Allium sativum and Zingiber officinale extracts on clinically important drug resistant pathogenic bacteria. Annals of Clinical Microbiology and Antimicrobials, 11, 8doi:10.1186/1476-0711-11-8
  • Hasan, S., Danishuddin, M., & Khan, A. U. (2015). Inhibitory effect of zingiber officinale towards Streptococcus mutans virulence and caries development: In vitro and in vivo studies. BMC Microbiology, 15(1), 1. doi:10.1186/s12866-014-0320-5
  • Islam, B., Khan, S. N., & Khan, A. U. (2007). Dental caries: From infection to prevention. Medical Science Monitor: International Medical Journal of Experimental and Clinical Research, 13(11), RA196–RA203.
  • Jain, I., Jain, P., Bisht, D., Sharma, A., Srivastava, B., & Gupta, N. (2015). Use of traditional Indian plants in the inhibition of caries-causing bacteria-Streptococcus mutans. Brazilian Dental Journal, 26(2), 110–115. doi:10.1590/0103-6440201300102
  • Johansen, K. T., Wubshet, S. G., Nyberg, N. T., & Jaroszewski, J. W. (2011). From retrospective assessment to prospective decisions in natural product isolation: HPLC-SPE-NMR analysis of Carthamus oxyacantha. Journal of Natural Products, 74(11), 2454–2461. doi:10.1021/np200780m
  • Kamal, N., Viegelmann, C. V., Clements, C. J., & Edrada-Ebel, R. (2016). Metabolomics-guided isolation of anti-trypanosomal metabolites from the endophytic fungus Lasiodiplodia theobromae. Planta Medica, 83(06), 565–573. doi:10.1055/s-0042-118601
  • Koga, T., Okahashi, N., Takahashi, I., Kanamoto, T., Asakawa, H., & Iwaki, M. (1990). Surface hydrophobicity, adherence, and aggregation of cell surface protein antigen mutants of Streptococcus mutans serotype c. Infection and Immunity, 58(2), 289–296. doi:10.1128/IAI.58.2.289-296.1990
  • Koo, H., Rosalen, P. L., Cury, J. A., Park, Y. K., & Bowen, W. H. (2002). Effects of compounds found in propolis on Streptococcus mutans growth and on glucosyltransferase activity. Antimicrobial Agents and Chemotherapy, 46(5), 1302–1309. doi:10.1128/aac.46.5.1302-1309.2002
  • Koo, H., Xiao, J., Klein, M. I., & Jeon, J. G. (2010). Exopolysaccharides produced by Streptococcus mutans glucosyltransferases modulate the establishment of microcolonies within multispecies biofilms. Journal of Bacteriology, 192(12), 3024–3032. doi:10.1128/JB.01649-09
  • Lu, Y., Xu, H., & Zhao, X. (2010). Crystal structure of the Apo form of D-Alanine:D-Alanine ligase (DDl) from Streptococcus mutans . Protein and Peptide Letters, 17(8), 1053–1057. doi:10.2174/092986610791498858
  • Lynch, D. J., Fountain, T. L., Mazurkiewicz, J. E., & Banas, J. A. (2007). Glucan-binding proteins are essential for shaping Streptococcus mutans biofilm architecture. FEMS Microbiology Letters, 268(2), 158–165. doi:10.1111/j.1574-6968.2006.00576.x
  • Lynch, D. J., Michalek, S. M., Zhu, M., Drake, D., Qian, F., & Banas, J. A. (2013). Cariogenicity of Streptococcus mutans glucan-binding protein deletion mutants. Oral Health and Dental Management, 12(4), 191–199.
  • Månsson, M., Phipps, R. K., Gram, L., Munro, M. H., Larsen, T. O., & Nielsen, K. F. (2010). Explorative solid-phase extraction (E-SPE) for accelerated microbial natural product discovery, dereplication, and purification. Journal of Natural Products, 73(6), 1126–1132. doi:10.1021/np100151y
  • Matsumoto-Nakano, M. (2018). Role of Streptococcus mutans surface proteins for biofilm formation. The Japanese Dental Science Review, 54(1), 22–29. doi:10.1016/j.jdsr.2017.08.002
  • Munda, S., Dutta, S., Haldar, S., & Lal, M. (2018). Chemical analysis and therapeutic uses of ginger (Zingiber officinale Rosc.) Essential Oil: A Review. Journal of Essential Oil Bearing Plants, 21(4), 994–1002. doi:10.1080/0972060X.2018.1524794
  • Nishidono, Y., Saifudin, A., Nishizawa, M., Fujita, T., Nakamoto, M., & Tanaka, K. (2018). Identification of the Chemical Constituents in Ginger (Zingiber officinale) Responsible for Thermogenesis. Natural Product Communications, 13(7), 1934578X1801300. doi:10.1177/1934578X1801300722
  • Olayemi, A. B., & Opaleye, F. I. (1990). Antibiotic resistance among coliform bacteria isolated from hospital and urban wastewaters. World Journal of Microbiology & Biotechnology, 6(3), 285–288. doi:10.1007/BF01201298
  • Ooshima, T., Matsumura, M., Hoshino, T., Kawabata, S., Sobue, S., & Fujiwara, T. (2001). Contributions of three glucosyltransferases to sucrose-dependent adherence of Streptococcus mutans. Journal of Dental Research, 80(7), 1672–1677. doi:10.1177/00220345010800071401
  • Petersen, P. E., Bourgeois, D., Ogawa, H., Estupinan-Day, S., & Ndiaye, C. (2005). The global burden of oral diseases and risks to oral health. Bulletin of the World Health Organization, 83(9), 661–669.
  • Prasad, S., & Tyagi, A. K. (2015). Ginger and its constituents: Role in prevention and treatment of gastrointestinal cancer. Gastroenterology Research and Practice, 2015, 1–11. doi:10.1155/2015/142979
  • Russell, M. W., Wu, H. ‐Y., White, P. L., Kilian, M., & Henrichsen, J. (1992). Serum antibody responses to Streptococcus mutans antigens in humans systemically infected with oral streptococci. Oral Microbiology and Immunology, 7(6), 321–325. doi:10.1111/j.1399-302X.1992.tb00630.x
  • Sandasi, M., Leonard, C. M., & Viljoen, A. M. (2010). The in vitro antibiofilm activity of selected culinary herbs and medicinal plants against Listeria monocytogenes. Letters in Applied Microbiology, 50(1), 30–35. doi:10.1111/j.1472-765X.2009.02747.x
  • Tamesada, M., Kawabata, S., Fujiwara, T., & Hamada, S. (2004). Synergistic effects of streptococcal glucosyltransferases on adhesive biofilm formation. Journal of Dental Research, 83(11), 874–879. doi:10.1177/154405910408301110
  • Tawfike, A. F., Tate, R., Abbott, G., Young, L., Viegelmann, C., Schumacher, M., Diederich, M., & Edrada‐Ebel, R. (2017). Metabolomic tools to assess the chemistry and bioactivity of endophytic Aspergillus strain. Chemistry & Biodiversity, 14(10), e1700040. doi:10.1002/cbdv.201700040
  • Vasavi, H. S., Sudeep, H. V., Lingaraju, H. B., & Prasad, K. S. (2017). Bioavailability-enhanced Resveramax™ modulates quorum sensing and inhibits biofilm formation in Pseudomonas aeruginosa PAO1. Microbial Pathogenesis, 104, 64–71.
  • Wolfender, J. L., & Allard, P. M. (2016). Integration of molecular networking and in-silico MS/MS fragmentation for sensitive high throughput natural products dereplication. Planta Medica, 81(S 01), S1–S381. doi:10.1055/s-0036-1596176
  • Wubshet, S. G., Johansen, K. T., Nyberg, N. T., & Jaroszewski, J. W. (2012). Direct 13C NMR detection in HPLC hyphenation mode: Analysis of Ganoderma lucidum terpenoids. Journal of Natural Products, 75(5), 876–882. doi:10.1021/np200915c
  • Xiao, J., & Koo, H. (2010). Structural organization and dynamics of exopolysaccharide matrix and microcolonies formation by Streptococcus mutans in biofilms. Journal of Applied Microbiology, 108(6), 2103–2113. doi:10.1111/j.1365-2672.2009.04616.x
  • Yeh, H-y., Chuang, C-h., Chen, H-c., Wan, C-j., Chen, T-l., & Lin, L-y. (2014). Bioactive components analysis of two various gingers (Zingiber officinale Roscoe) and antioxidant effect of ginger extracts. LWT-Food Science and Technology, 55(1), 329–334. doi:10.1016/j.lwt.2013.08.003

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.