294
Views
6
CrossRef citations to date
0
Altmetric
Research Articles

Synthesis, evaluation, molecular dynamics simulation and targets identification of novel pyrazole-containing imide derivatives

, ORCID Icon, , , , , & show all
Pages 2176-2188 | Received 11 Mar 2020, Accepted 16 Mar 2020, Published online: 31 Mar 2020

References

  • Alvarez, H. A., McCarthy, A. N., & Grigera, J. R. (2012). A molecular dynamics approach to ligand-receptor interaction in the aspirin-human serum albumin complex. Journal of Biophysics (Biophysics), 2012, 1–7. doi:10.1155/2012/642745
  • Ansari, A., Ali, A., Asif, M., & Shamsuzzaman, S. (2017). Biologically active pyrazole derivatives. New Journal of Chemistry, 41(1), 16–41. doi:10.1039/C6NJ03181A
  • Bhowmik, D., Jagadeesan, R., Rai, P., Nandi, R., Gugan, K., & Kumar, D. (2020). Evaluation of potential drugs against leishmaniasis targeting catalytic subunit of Leishmania donovani nuclear DNA primase using ligand based virtual screening, docking and molecular dynamics approaches. Journal of Biomolecular Structure and Dynamics (just accepted), 1–24.
  • Blackburn, E. A. (2010). Biophysical studies of protein-ligand interactions and the discovery of FKBP12 inhibitors. University of Edinburgh.
  • Budhu, A., Gillilan, R., & Noy, N. (2001). Localization of the RAR interaction domain of cellular retinoic acid binding protein-II. Journal of Molecular Biology, 305(4), 939–949. doi:10.1006/jmbi.2000.4340
  • Cheng, X. C., Wang, R. L., Dong, Z. K., Li, J., Li, Y. Y., & Li, R. R. (2012). Design, synthesis and evaluation of novel metalloproteinase inhibitors based on L-tyrosine scaffold. Bioorganic & Medicinal Chemistry, 20(19), 5738–5744. doi:10.1016/j.bmc.2012.08.014
  • Deshmukh, S., Madagi, S. B., & Savadatti, V. (2013). Identification of potential anti-tumorigenic targets for rosemary components using dual reverse screening approaches. International Journal of Pharma and Bio Sciences, 3, 399–408.
  • Dong, Q., Dougan, D. R., Gong, X., Halkowycz, P., Jin, B., Kanouni, T., O'Connell, S. M., Scorah, N., Shi, L., Wallace, M. B., & Zhou, F. (2011). Discovery of TAK-733, a potent and selective MEK allosteric site inhibitor for the treatment of cancer. Bioorganic & Medicinal Chemistry Letters, 21(5), 1315–1319. doi:10.1016/j.bmcl.2011.01.071
  • Froufe, H. J., Abreu, R., & Ferreira, I. C. (2011). Mdm2 as a potential target for mushrooms LMW compounds 2nd Iberic Meeting on Medicinal Chemistry: G Protein-Coupled Receptors and Enzymes in Drug Discovery, 12 a 15 de Junho de 2011. Iberic.
  • Ghoneim, R. H., Sock, E. T. N., Lavoie, J.-M., & Piquette-Miller, M. (2015). Effect of a high-fat diet on the hepatic expression of nuclear receptors and their target genes: Relevance to drug disposition. The British Journal of Nutrition, 113(3), 507–516. doi:10.1017/S0007114514003717
  • Gray, G. M., Ma, N., Wagner, C. E., & van der Vaart, A. (2017). Molecular dynamics simulations and molecular flooding studies of the retinoid X-receptor ligand binding domain. Journal of Molecular Modeling, 23(3), 98. doi:10.1007/s00894-017-3260-9
  • Hess, B., Bekker, H., Berendsen, H. J. C., & Fraaije, J. G. E. M. (1997). LINCS: A linear constraint solver for molecular simulations. Journal of Computational Chemistry, 18(12), 1463–1472. doi:10.1002/(SICI)1096-987X(199709)18:12<1463::AID-JCC4>3.0.CO;2-H
  • Insuasty, B., Tigreros, A., Orozco, F., Quiroga, J., Abonía, R., Nogueras, M., Sanchez, A., & Cobo, J. (2010). Synthesis of novel pyrazolic analogues of chalcones and their 3-aryl-4-(3-aryl-4, 5-dihydro-1H-pyrazol-5-yl)-1-phenyl-1H-pyrazole derivatives as potential antitumor agents. Bioorganic & Medicinal Chemistry, 18(14), 4965–4974. doi:10.1016/j.bmc.2010.06.013
  • Kandagalla, S., Sharath, B. S., Bharath, B. R., Hani, U., & Manjunatha, H. (2017). Molecular docking analysis of curcumin analogues against kinase domain of ALK5. In Silico Pharmacology, 5(1), 15. doi:10.1007/s40203-017-0034-0
  • Karrouchi, K., Radi, S., Ramli, Y., Taoufik, J., Mabkhot, Y., Al-Aizari, F., & Ansar, M. (2018). Synthesis and pharmacological activities of pyrazole derivatives: A review. Molecules, 23(1), 134. doi:10.3390/molecules23010134
  • Konerding, D. E., Cheatham, T. E., III, Kollman, P. A., & James, T. L. (1999). Restrained molecular dynamics of solvated duplex DNA using the particle mesh Ewald method. Journal of Biomolecular NMR, 13(2), 119–131.
  • Kotamarthi, H. C., Yadav, A., & Ainavarapu, S. R. K. (2015). Small peptide binding stiffens the ubiquitin-like protein SUMO1. Biophysical Journal, 108(2), 360–367. doi:10.1016/j.bpj.2014.11.3474
  • Kumar, A., Jain, S., Parle, M., Jain, N., & Kumar, P. (2013). 3-Aryl-1-phenyl-1H-pyrazole derivatives as new multitarget directed ligands for the treatment of Alzheimer’s disease, with acetylcholinesterase and monoamine oxidase inhibitory properties. EXCLI Journal, 12, 1030–1042.
  • Kumar, A., Roy, S., Tripathi, S., & Sharma, A. (2015). Molecular docking based virtual screening of natural compounds as potential BACE1 inhibitors: 3D-QSAR pharmacophore mapping and molecular dynamics analysis. Journal of Biomolecular Structure & Dynamics, 34(2), 1–46.
  • Kumari, R., Kumar, R., & Lynn, A.; Open Source Drug Discovery Consortium. (2014). g_mmpbsa-A GROMACS tool for high-throughput MM-PBSA calculations. Journal of Chemical Information and Modeling, 54(7), 1951–1962. doi:10.1021/ci500020m
  • Le Maire, A., Bourguet, W., & Balaguer, P. (2010). A structural view of nuclear hormone receptor: Endocrine disruptor interactions. Cellular and Molecular Life Sciences : CMLS, 67(8), 1219–1237. doi:10.1007/s00018-009-0249-2
  • Li, X., Xu, X., Wang, J., Yu, H., Wang, X., Yang, H., Xu, H., Tang, S., Li, Y., Yang, L., Huang, L., Wang, Y., & Yang, S. (2012). A system-level investigation into the mechanisms of Chinese Traditional Medicine: Compound Danshen Formula for cardiovascular disease treatment. PLos One, 7(9), e43918. doi:10.1371/journal.pone.0043918
  • Liu, X., Ouyang, S., Yu, B., Liu, Y., Huang, K., Gong, J., Zheng, S., Li, Z., Li, H., & Jiang, H. (2010). PharmMapper server: A web server for potential drug target identification using pharmacophore mapping approach. Nucleic Acids Research, 38(Web Server issue), W609–W614. doi:10.1093/nar/gkq300
  • Ma, Y., Wang, S. Q., Xu, W. R., Wang, R. L., & Chou, K. C. (2012). Design novel dual agonists for treating type-2 diabetes by targeting peroxisome proliferator-activated receptors with core hopping approach. PLoS One, 7(6), e38546. doi:10.1371/journal.pone.0038546
  • MacKerell, A. D., Bashford, D., Bellott, M., Dunbrack, R. L., Evanseck, J. D., Field, M. J., Fischer, S., Gao, J., Guo, H., Ha, S., Joseph-McCarthy, D., Kuchnir, L., Kuczera, K., Lau, F. T., Mattos, C., Michnick, S., Ngo, T., Nguyen, D. T., Prodhom, B., … Karplus, M. (1998). All-atom empirical potential for molecular modeling and dynamics studies of proteins. The Journal of Physical Chemistry B, 102(18), 3586–3616. doi:10.1021/jp973084f
  • Maddila, S., Naicker, K., Momin, M. I. K., Rana, S., Gorle, S., Maddila, S., Yalagala, K., Singh, M., Koorbanally, N. A., & Jonnalagadda, S. B. (2016). Novel 2-(1-(substitutedbenzyl)-1 H -tetrazol-5-yl)-3-phenylacrylonitrile derivatives: Synthesis, in vitro antitumor activity and computational studies. Medicinal Chemistry Research, 25(2), 283–291. doi:10.1007/s00044-015-1482-x
  • Maltarollo, V. G., Homem-de-Mello, P., & Honorio, K. M. (2011). Role of physicochemical properties in the activation of peroxisome proliferator-activated receptor δ. Journal of Molecular Modeling, 17(10), 2549–2558. doi:10.1007/s00894-010-0935-x
  • Mehla, K., & Ramana, J. (2016). Travelers’ diarrhea-associated enterotoxigenic Escherichia coli gyrA mutants and quinolone antibiotic affinity: a molecular dynamics simulation and residue interaction network analysis. OMICS: A Journal of Integrative Biology, 20(11), 635–644. doi:10.1089/omi.2016.0104
  • Mehta, K., McQueen, T., Neamati, N., Collins, S., & Andreeff, M. (1996). Activation of retinoid receptors RAR alpha and RXR alpha induces differentiation and apoptosis, respectively, in HL-60 cells. Cell Growth & Differentiation: The Molecular Biology Journal of the American Association for Cancer Research, 7(2), 179–186.
  • Miller, A., Carchman, R., Long, R., & Denslow, S. A. (2012). La Crosse viral infection in hospitalized pediatric patients in Western North Carolina. Hospital Pediatrics, 2(4), 235–242. doi:10.1542/hpeds.2012-0022
  • Monaco, H. L. (2009). The transthyretin—Retinol-binding protein complex recent advances in transthyretin evolution, structure and biological functions (pp. 123–142). Springer.
  • Nassar, I. F., El Farargy, A. F., Abdelrazek, F. M., & Ismail, N. S. M. (2017). Design, synthesis and anticancer evaluation of novel pyrazole, pyrazolo[3,4-d]pyrimidine and their glycoside derivatives. Nucleosides, Nucleotides, and Nucleic Acids, 36(4), 275–291. doi:10.1080/15257770.2016.1276290
  • Navya, P., Priyadarshini, I. V., & Umamaheswari, A. (2011). Identification of small molecule inhibitor of cyclophilin-A using high throughput virtual screening and molecular docking Studies. Nature Precedings, 6, 1–1.
  • Nazreen, S., Alam, M. S., Hamid, H., Shahar Yar, M., Dhulap, A., Alam, P., Pasha, M. A. Q., Bano, S., Alam, M. M., Haider, S., Kharbanda, C., Ali, Y., & Pillai, K. (2015). Design, synthesis, and biological evaluation of thiazolidine‐2,4‐dione conjugates as PPAR‐γ agonists. Archiv Der Pharmazie, 348(6), 421–432. doi:10.1002/ardp.201400280
  • Nitulescu, G. M., Draghici, C., & Missir, A. V. (2010). Synthesis of new pyrazole derivatives and their anticancer evaluation. European Journal of Medicinal Chemistry, 45(11), 4914–4919. doi:10.1016/j.ejmech.2010.07.064
  • Nitulescu, G. M., Draghici, C., & Olaru, O. T. (2013). New potential antitumor pyrazole derivatives: Synthesis and cytotoxic evaluation. International Journal of Molecular Sciences, 14(11), 21805–21818. doi:10.3390/ijms141121805
  • Norberto de Souza, O., & Ornstein, R. L. (1999). Molecular dynamics simulations of a protein-protein dimer: Particle-mesh Ewald electrostatic model yields far superior results to standard cutoff model. Journal of Biomolecular Structure & Dynamics, 16(6), 1205–1218. doi:10.1080/07391102.1999.10508328
  • Owada, Y. (2008). Fatty acid binding protein: Localization and functional significance in the brain. The Tohoku Journal of Experimental Medicine, 214(3), 213–220. doi:10.1620/tjem.214.213
  • Pakdel, M., Raissi, H., & Shahabi, M. (2020). Predicting doxorubicin drug delivery by single-walled carbon nanotube through cell membrane in the absence and presence of nicotine molecules: A molecular dynamics simulation study. Journal of Biomolecular Structure & Dynamics, 38(5), 1488–1411. doi:10.1080/07391102.2019.1611474
  • Persson, B., Kallberg, Y., Bray, J. E., Bruford, E., Dellaporta, S. L., Favia, A. D., Duarte, R. G., Jörnvall, H., Kavanagh, K. L., Kedishvili, N., Kisiela, M., Maser, E., Mindnich, R., Orchard, S., Penning, T. M., Thornton, J. M., Adamski, J., & Oppermann, U. (2009). The SDR (short-chain dehydrogenase/reductase and related enzymes) nomenclature initiative. Chemico-Biological Interactions, 178(1–3), 94–98. doi:10.1016/j.cbi.2008.10.040
  • Rao, L., Chi, B., Ren, Y., Li, Y., Xu, X., & Wan, J. (2016). DOX: A new computational protocol for accurate prediction of the protein–ligand binding structures. Journal of Computational Chemistry, 37(3), 336–344. doi:10.1002/jcc.24217
  • Sabarinathan, R., Aishwarya, K., Sarani, R., Vaishnavi, M. K., & Sekar, K. (2011). Water-mediated ionic interactions in protein structures. Journal of Biosciences, 36(2), 253–263. doi:10.1007/s12038-011-9067-4
  • Saiz-Urra, L., Cabrera, M. A., & Froeyen, M. (2011). Exploring the conformational changes of the ATP binding site of gyrase B from Escherichia coli complexed with different established inhibitors by using molecular dynamics simulation: Protein-ligand interactions in the light of the alanine scanning and free energy decomposition methods. Journal of Molecular Graphics and Modelling, 29(5), 726–739. doi:10.1016/j.jmgm.2010.12.005
  • Sakkiah, S., Thangapandian, S., John, S., Kwon, Y. J., & Lee, K. W. (2010). 3D QSAR pharmacophore based virtual screening and molecular docking for identification of potential HSP90 inhibitors. European Journal of Medicinal Chemistry, 45(6), 2132–2140. doi:10.1016/j.ejmech.2010.01.016
  • Saravanan, K., Hunday, G., & Kumaradhas, P. (2020). Binding and stability of indirubin-3-monoxime in the GSK3β enzyme: A molecular dynamics simulation and binding free energy study. Journal of Biomolecular Structure & Dynamics, 38(4), 957–918. doi:10.1080/07391102.2019.1591301
  • Saremi, L. H., Ebrahimi, A., & Lagzian, M. (2020). Identification of new potential cyclooxygenase-2 inhibitors: Insight from high throughput virtual screening of 18 million compounds combined with molecular dynamic simulation and quantum mechanics. Journal of Biomolecular Structure and Dynamics, 1–35.
  • Sarkar, R. (2018). Stiffening of flexible SUMO1 protein upon peptide-binding: Analysis with anisotropic network model. Mathematical Biosciences, 295, 67–72. doi:10.1016/j.mbs.2017.11.008
  • van Aalten, D. M., Bywater, R., Findlay, J. B., Hendlich, M., Hooft, R. W., & Vriend, G. (1996). PRODRG, a program for generating molecular topologies and unique molecular descriptors from coordinates of small molecules. Journal of Computer-Aided Molecular Design, 10(3), 255–262. doi:10.1007/BF00355047
  • Vijayakumar, B., Parasuraman, S., Raveendran, R., & Velmurugan, D. (2014). Identification of natural inhibitors against angiotensin I converting enzyme for cardiac safety using induced fit docking and MM-GBSA studies. Pharmacognosy Magazine, 10(39), 639–644. doi:10.4103/0973-1296.139809
  • Wang, B.-L., Zhu, H.-W., Ma, Y., Xiong, L.-X., Li, Y.-Q., Zhao, Y., Zhang, J.-F., Chen, Y.-W., Zhou, S., & Li, Z.-M. (2013). Synthesis, insecticidal activities, and SAR studies of novel pyridylpyrazole acid derivatives based on amide bridge modification of anthranilic diamide insecticides. Journal of Agricultural and Food Chemistry, 61(23), 5483–5493. doi:10.1021/jf4012467
  • Wang, N., Jiang, J., Li, X., Tan, H., Zheng, J., Chen, G., & Jia, Z. (2015). Molecular dynamics simulation studies of dTTP binding and catalysis mediated by YhdE dimerization. PLoS One, 10(8), e0134879. doi:10.1371/journal.pone.0134879
  • Wang, X., Shen, Y., Wang, S., Li, S., Zhang, W., Liu, X., Lai, L., Pei, J., & Li, H. (2017). PharmMapper 2017 update: A web server for potential drug target identification with a comprehensive target pharmacophore database. Nucleic Acids Research, 45(W1), W356–W360. doi:10.1093/nar/gkx374
  • Wang, Y., Feng, S., Gao, H., & Wang, J. (2020). Computational investigations of gram-negative bacteria phosphopantetheine adenylyltransferase inhibitors using 3D-QSAR, molecular docking and molecular dynamic simulations. Journal of Biomolecular Structure & Dynamics, 38(5), 1435–1413. doi:10.1080/07391102.2019.1608305
  • Wright, L., Barril, X., Dymock, B., Sheridan, L., Surgenor, A., Beswick, M., Drysdale, M., Collier, A., Massey, A., Davies, N., Fink, A., Fromont, C., Aherne, W., Boxall, K., Sharp, S., Workman, P., & Hubbard, R. E. (2004). Structure-activity relationships in purine-based inhibitor binding to HSP90 isoforms. Chemistry & Biology, 11(6), 775–785. doi:10.1016/j.chembiol.2004.03.033
  • Wu, J.-W., Yin, L., Liu, Y-Q., Zhang, H., Xie, Y-F., Wang, R-L., & Zhao, G-L. (2019). Synthesis, biological evaluation and 3D-QSAR studies of 1, 2, 4-triazole-5-substituted carboxylic acid bioisosteres as uric acid transporter 1 (URAT1) inhibitors for the treatment of hyperuricemia associated with gout. Bioorganic & Medicinal Chemistry Letters, 29(3), 383–388. doi:10.1016/j.bmcl.2018.12.036
  • Wu, J.-W., Zhang, H., Li, W.-Y., Tang, X., Li, H.-L., Lu, X.-H., Zheng, Z.H., May, Y., & Wang, R.-L. (2019). Design potential selective inhibitors for human leukocyte common antigen-related (PTP-LAR) with fragment replace approach. Journal of Biomolecular Structure and Dynamics, 1–11.
  • Wu, J., Li, W., Zheng, Z., Lu, X., Zhang, H., Ma, Y., & Wang, R. (2020). Design, synthesis, biological evaluation, Common feature pharmacophore model and molecular dynamics simulation studies of ethyl 4-(phenoxymethyl)-2-phenylthiazole-5-carboxylate as Src Homology-2 Domain Containing Protein Tyrosine Phosphatase-2 (SHP2) inhibitors. Journal of Biomolecular Structure and Dynamics, 1–29. just-accepted.
  • Wu, J., Sun, Y., Zhou, H., Ma, Y., & Wang, R. (2019). Design, synthesis, biological evaluation and molecular dynamics simulation studies of (R)-5-methylthiazolidin-4-One derivatives as megakaryocyte protein tyrosine phosphatase 2 (PTP-MEG2) inhibitors for the treatment of type 2 diabetes. Journal of Biomolecular Structure and Dynamics, 1–10. doi:10.1080/07391102.2019.1654410
  • Yu, D. (1992). Application of MTT colorimetric assay to cancer cellular biological studies. Journal of Practical Oncology.
  • Zhang, L. S., Wang, S. Q., Xu, W. R., Wang, R. L., & Wang, J. F. (2012). Scaffold-based pan-agonist design for the PPARalpha, PPARbeta and PPARgamma receptors. PLoS One, 7(10), e48453. doi:10.1371/journal.pone.0048453
  • Zhang, Z., Chen, H., Chen, Z., Ding, P., Ju, Y., Gu, Q., Xu, J., & Zhou, H. (2019). Identify liver X receptor β modulator building blocks by developing a fluorescence polarization-based competition assay. European Journal of Medicinal Chemistry, 178, 458–467.
  • Zheng, L.-W., Wu, L.-L., Zhao, B.-X., Dong, W.-L., & Miao, J.-Y. (2009). Synthesis of novel substituted pyrazole-5-carbohydrazide hydrazone derivatives and discovery of a potent apoptosis inducer in A549 lung cancer cells. Bioorganic & Medicinal Chemistry, 17(5), 1957–1962. doi:10.1016/j.bmc.2009.01.037

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.