189
Views
3
CrossRef citations to date
0
Altmetric
Research Articles

In silico design of peptide inhibitors of tubulin: amyloid-β as a lead compound

& ORCID Icon
Pages 2189-2198 | Received 10 Feb 2020, Accepted 16 Mar 2020, Published online: 28 Mar 2020

References

  • Ari, C., Borysov, S. I., Wu, J., Padmanabhan, J., & Potter, H. (2014). Alzheimer amyloid beta inhibition of Eg5/kinesin 5 reduces neurotrophin and/or transmitter receptor function. Neurobiology of Aging, 35(8), 1839–1849. doi:10.1016/j.neurobiolaging.2014.02.006
  • Bai, R. L., Pettit, G. R., & Hamel, E. (1990). Binding of dolastatin 10 to tubulin at a distinct site for peptide antimitotic agents near the exchangeable nucleotide and vinca alkaloid sites. Journal of Biological Chemistry, 265(28), 17141–17149.
  • Behrens, M. I., Lendon, C., & Roe, C. M. (2009). A common biological mechanism in cancer and Alzheimer’s disease? Current Alzheimer Research, 6(3), 196–204. doi:10.2174/156720509788486608
  • Bornens, M. (2012). The centrosome in cells and organisms. Science (New York, N.Y.), 335(6067), 422–426. doi:10.1126/science.1209037
  • Borysov, S. I., Granic, A., Padmanabhan, J., Walczak, C. E., & Potter, H. (2011). Alzheimer Aβ disrupts the mitotic spindle and directly inhibits mitotic microtubule motors. Cell Cycle (Georgetown, Tex.), 10(9), 1397–1410. doi:10.4161/cc.10.9.15478
  • Bussi, G., Donadio, D., & Parrinello, M. (2007). Canonical sampling through velocity rescaling. The Journal of Chemical Physics, 126(1), 014101. doi:10.1063/1.2408420
  • Cormier, A., Marchand, M., Ravelli, R. B., Knossow, M., & Gigant, B. (2008). Structural insight into the inhibition of tubulin by vinca domain peptide ligands. EMBO Reports, 9(11), 1101–1106. doi:10.1038/embor.2008.171
  • Di, L. (2015). Strategic approaches to optimizing peptide ADME properties. The AAPS Journal, 17(1), 134–143. doi:10.1208/s12248-014-9687-3
  • Du, S., Zhang, K., Yao, X., & Du, J. (2019). Investigation on the fungicide resistance mechanism against Botrytis cinerea β-tubulin inhibitor zoxamide by computational study. Journal of Biomolecular Structure and Dynamics, 1–9. doi:10.1080/07391102.2019.1671230
  • Dumontet, C., & Jordan, M. A. (2010). Microtubule-binding agents: A dynamic field of cancer therapeutics. Nature Reviews Drug Discovery, 9(10), 790–803. doi:10.1038/nrd3253
  • Ebadi, A., Razzaghi-Asl, N., Khoshneviszadeh, M., & Miri, R. (2013). Comparative amino acid decomposition analysis of potent type I p38α inhibitors. Daru: Journal of Faculty of Pharmacy, Tehran University of Medical Sciences, 21(1), 41. doi:10.1186/2008-2231-21-41
  • Ganguli, M., Dodge, H. H., Shen, C., Pandav, R. S., & DeKosky, S. T. (2005). Alzheimer disease and mortality: A 15-year epidemiological study. Archives of Neurology, 62(5), 779–784. doi:10.1001/archneur.62.5.779
  • Gigant, B., Wang, C., Ravelli, R. B. G., Roussi, F., Steinmetz, M. O., Curmi, P. A., Sobel, A., & Knossow, M. (2005). Structural basis for the regulation of tubulin by vinblastine. Nature, 435(7041), 519–522. doi:10.1038/nature03566
  • Hamel, E. (2002). Interactions of antimitotic peptides and depsipeptides with tubulin. Biopolymers, 66(3), 142–160. doi:10.1002/bip.10255
  • Hamel, E., & Covell, D. G. (2002). Antimitotic peptides and depsipeptides. Current Medicinal Chemistry-anti-Cancer Agents, 2(1), 19–53. doi:10.2174/1568011023354263
  • Hardy, J., & Selkoe, D. J. (2002). The amyloid hypothesis of Alzheimer’s disease: Progress and problems on the road to therapeutics. Science, 297(5580), 353–356. doi:10.1126/science.1072994
  • Hess, B., Kutzner, C., Van Der Spoel, D., & Lindahl, E. (2008). GROMACS 4: Algorithms for highly efficient, load-balanced, and scalable molecular simulation. Journal of Chemical Theory and Computation, 4(3), 435–447. doi:10.1021/ct700301q
  • Jana, S., & Singh, S. K. (2020). Identification of human tau-tubulin kinase 1 inhibitors: An integrated e-pharmacophore-based virtual screening and molecular dynamics simulation. Journal of Biomolecular Structure & Dynamics, 38(3), 886–900. doi:10.1080/07391102.2019.1590242
  • Kaspar, A. A., & Reichert, J. M. (2013). Future directions for peptide therapeutics development. Drug Discovery Today, 18(17–18), 807–817. doi:10.1016/j.drudis.2013.05.011
  • Kortemme, T., & Baker, D. (2002). A simple physical model for binding energy hot spots in protein–protein complexes. Proceedings of the National Academy of Sciences of United States of America, 99(22), 14116–14121. doi:10.1073/pnas.202485799
  • Kueh, H. Y., & Mitchison, T. J. (2009). Structural plasticity in actin and tubulin polymer dynamics. Science (New York, N.Y.), 325(5943), 960–963. doi:10.1126/science.1168823
  • Kumbhar, B. V., Bhandare, V. V., Panda, D., & Kunwar, A. (2020). Delineating the interaction of combretastatin A-4 with αβ tubulin isotypes present in drug resistant human lung carcinoma using a molecular modeling approach. Journal of Biomolecular Structure & Dynamics, 38(2), 426–438. doi:10.1080/07391102.2019.1577174
  • Kyte, J., & Doolittle, R. F. (1982). A simple method for displaying the hydropathic character of a protein. Journal of Molecular Biology, 157(1), 105–132. doi:10.1016/0022-2836(82)90515-0
  • Laskowski, R. A. (2009). PDBsum new things. Nucleic Acids Research, 37(Database issue), D355–D359. doi:10.1093/nar/gkn860
  • Lau, J. L., & Dunn, M. K. (2018). Therapeutic peptides: Historical perspectives, current development trends, and future directions. Bioorganic & Medicinal Chemistry, 26(10), 2700–2707. doi:10.1016/j.bmc.2017.06.052
  • Lee, S. K., Chang, G. S., Lee, I. H., Chung, J. E., Sung, K. Y., & No, K. T. (2004). The PreADME: Pc-based program for batch prediction of adme properties. EuroQSAR, 9, 5–10.
  • Löwe, J., Li, H., Downing, K. H., & Nogales, E. (2001). Refined structure of αβ-tubulin at 3.5 Å resolution1. Journal of Molecular Biology, 313(5), 1045–1057. doi:10.1006/jmbi.2001.5077
  • Marrink, S. J., Risselada, H. J., Yefimov, S., Tieleman, D. P., & De Vries, A. H. (2007). The MARTINI force field: Coarse grained model for biomolecular simulations. The Journal of Physical Chemistry. B, 111(27), 7812–7824. doi:10.1021/jp071097f
  • Mitchison, T., & Kirschner, M. (1984). Dynamic instability of microtubule growth. Nature, 312(5991), 237–242. doi:10.1038/312237a0
  • Nogales, E., Downing, K. H., Amos, L. A., & Löwe, J. (1998). Tubulin and FtsZ form a distinct family of GTPases. Nature Structural Biology, 5(6), 451–458. doi:10.1038/nsb0698-451
  • Oostenbrink, C., Villa, A., Mark, A. E., & Van Gunsteren, W. F. (2004). A biomolecular force field based on the free enthalpy of hydration and solvation: The GROMOS force-field parameter sets 53A5 and 53A6 . Journal of Computational Chemistry, 25(13), 1656–1676. doi:10.1002/jcc.20090
  • Paris, D., Townsend, K., Quadros, A., Humphrey, J., Sun, J., Brem, S., Wotoczek-Obadia, M., DelleDonne, A., Patel, N., Obregon, D. F., Crescentini, R., Abdullah, L., Coppola, D., Rojiani, A. M., Crawford, F., Sebti, S. M., & Mullan, M. (2004). Inhibition of angiogenesis by Aβ peptides. Angiogenesis, 7(1), 75–85. doi:10.1023/B:AGEN.0000037335.17717.bf
  • Parrinello, M., & Rahman, A. (1981). Polymorphic transitions in single crystals: A new molecular dynamics method. Journal of Applied Physics, 52(12), 7182–7190. doi:10.1063/1.328693
  • Periole, X., Cavalli, M., Marrink, S.-J., & Ceruso, M. A. (2009). Combining an elastic network with a coarse-grained molecular force field: Structure, dynamics, and intermolecular recognition. Journal of Chemical Theory and Computation, 5(9), 2531–2543. doi:10.1021/ct9002114
  • Pires, D. E., Blundell, T. L., & Ascher, D. B. (2015). pkCSM: Predicting small-molecule pharmacokinetic and toxicity properties using graph-based signatures. Journal of Medicinal Chemistry, 58(9), 4066–4072. doi:10.1021/acs.jmedchem.5b00104
  • Porollo, A., & Meller, J. (2006). Prediction‐based fingerprints of protein–protein interactions. Proteins: Structure, Function, and Bioinformatics, 66(3), 630–645. doi:10.1002/prot.21248
  • Räder, A. F., Reichart, F., Weinmüller, M., & Kessler, H. (2018). Improving oral bioavailability of cyclic peptides by N-methylation. Bioorganic & Medicinal Chemistry, 26(10), 2766–2773. doi:10.1016/j.bmc.2017.08.031
  • Ravelli, R. B. G., Gigant, B., Curmi, P. A., Jourdain, I., Lachkar, S., Sobel, A., & Knossow, M. (2004). Insight into tubulin regulation from a complex with colchicine and a stathmin-like domain. Nature, 428(6979), 198–202.
  • Razzaghi-Asl, N., Karimi, A., & Ebadi, A. (2018). The potential of natural product vs neurodegenerative disorders: In silico study of artoflavanocoumarin as BACE-1 inhibitor. Computational Biology and Chemistry, 77, 307–317. doi:10.1016/j.compbiolchem.2018.10.015
  • Saha, A., Mohapatra, S., Kurkute, P., Jana, B., Mondal, P., Bhunia, D., Ghosh, S., & Ghosh, S. (2015). Interaction of Aβ peptide with tubulin causes an inhibition of tubulin polymerization and the apoptotic death of cancer cells. Chemical Communications (Communications), 51(12), 2249–2252. doi:10.1039/C4CC09390A
  • Smith, C. D., & Zhang, X. (1996). Mechanism of action of cryptophycin interaction with the vinca alkaloid domain of tubulin. The Journal of Biological Chemistry, 271(11), 6192–6198. doi:10.1074/jbc.271.11.6192
  • Sponne, I., Fifre, A., Drouet, B., Klein, C., Koziel, V., Pinçon-Raymond, M., Olivier, J.-L., Chambaz, J., & Pillot, T. (2003). Apoptotic neuronal cell death induced by the non-fibrillar amyloid-β peptide proceeds through an early reactive oxygen species-dependent cytoskeleton perturbation. The Journal of Biological Chemistry, 278(5), 3437–3445. doi:10.1074/jbc.M206745200
  • van Zundert, G. C. P., Rodrigues, J. P. G. L. M., Trellet, M., Schmitz, C., Kastritis, P. L., Karaca, E., Melquiond, A. S. J., van Dijk, M., de Vries, S. J., & Bonvin, A. M. J. J. (2016). The HADDOCK2. 2 web server: User-friendly integrative modeling of biomolecular complexes. Journal of Molecular Biology, 428(4), 720–725. doi:10.1016/j.jmb.2015.09.014
  • Vivekanandan, S., Brender, J. R., Lee, S. Y., & Ramamoorthy, A. (2011). A partially folded structure of amyloid-beta (1–40) in an aqueous environment. Biochemical and Biophysical Research Communications, 411(2), 312–316. doi:10.1016/j.bbrc.2011.06.133
  • Waight, A. B., Bargsten, K., Doronina, S., Steinmetz, M. O., Sussman, D., & Prota, A. E. (2016). Structural basis of microtubule destabilization by potent auristatin anti-mitotics. PLoS One, 11(8), e0160890doi:10.1371/journal.pone.0160890
  • Werle, M., & Föger, F. (2018). Peroral peptide delivery: Peptidase inhibition as a key concept for commercial drug products. Bioorganic & Medicinal Chemistry, 26(10), 2906–2913. doi:10.1016/j.bmc.2017.08.028
  • Yamada, M., Sasaki, H., Mimori, Y., Kasagi, F., Sudoh, S., Ikeda, J., Hosoda, Y., Nakamura, S., & Kodama, K. (1999). Prevalence and risks of dementia in the Japanese population: RERF’s adult health study Hiroshima subjects. Journal of the American Geriatrics Society, 47(2), 189–195. doi:10.1111/j.1532-5415.1999.tb04577.x

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.