406
Views
10
CrossRef citations to date
0
Altmetric
Research Articles

An in-silico approach: identification of PPAR-γ agonists from seaweeds for the management of Alzheimer’s Disease

, , , , &
Pages 2210-2229 | Received 16 Nov 2019, Accepted 16 Mar 2020, Published online: 15 Apr 2020

References

  • Ahmed, S., Islam, N., Shahinozzaman, M., Fakayode, S. O., Afrin, N., & Halim, M. A. (2020). Virtual screening, molecular dynamics, density functional theory and quantitative structure activity relationship studies to design peroxisome proliferator-activated receptor-γ agonists as anti-diabetic drugs. Journal of Biomolecular Structure and Dynamics, 1–15. doi:10.1080/07391102.2020.1714482
  • Ambure, P., Bhat, J., Puzyn, T., & Roy, K. (2019). Identifying natural compounds as multi-target-directed ligands against Alzheimer’s disease: An in silico approach. Journal of Biomolecular Structure and Dynamics, 37(5), 1282–1306. doi:10.1080/07391102.2018
  • Berman, H. M., Westbrook, J., Feng, J., Gilliland, G., Bhat, T. N., Weissig, H., & Bourne, P. E. S. (2000). The Protein Data Bank. Nucleic Acids Research, 28(1), 235–242. doi:10.1093/nar/28.1.235
  • Chatterjee, S., & Mudher, A. (2018). Alzheimers Disease and type 2 diabetes: A critical assessment of the Shared pathological traits. Frontiers in Neuroscience, 12, 383. doi:10.3389/fnins.2018.00383
  • Cisternas, P., Salazar, P., Silva-Álvarez, C., Barros, L. F., & Inestrosa, N. C. (2016). Activation of WNT signaling in cortical neurons enhances glucose utilization through glycolysis. Journal of Biological Chemistry, 291(50), 25950–25964. doi:10.1074/jbc.M116.735373
  • Cronet, P., Petersen, J. F. W., Folmer, R., Blomberg, N., Sjöblom, K., Karlsson, U., Lindstedt, E.-L., & Bamberg, K. (2001). Structure of the PPARα and -γ ligand binding domain in complex with AZ 242; ligand selectivity and agonist activation in the PPAR family. Structure, 9(8), 699–706. doi:10.1016/S0969-2126(01)00634-7
  • Davis, G. D. J., & Vasanthi, A. H. R. (2011). Seaweed metabolite database (SWMD): A database of natural compounds from marine algae. Bioinformation, 5(8), 361–364. doi:10.6026/97320630005361
  • Escribano, L., Simón, A.-M., Gimeno, E., Cuadrado-Tejedor, M., López de Maturana, R., García-Osta, A., Ricobaraza, A., Pérez-Mediavilla, A., Del Río, J., & Frechilla, D. (2010). Rosiglitazone rescues memory impairment in Alzheimers transgenic mice: Mechanisms involving a reduced amyloid and tau pathology. Neuropsychopharmacology, 35(7), 1593–1604. doi:10.1038/npp.2010.32
  • Eslami, M., Nezafat, N., Negahdaripour, M., & Ghasemi, Y. (2019). Computational approach to suggest a new multi-target-directed ligand as a potential medication for Alzheimer’s disease. Journal of Biomolecular Structure and Dynamics, 37(18), 4825–4839. doi:10.1080/07391102.2018.1564701
  • Facts and Figures. (n.d.). https://www.alz.org/alzheimers-dementia/facts-figures
  • Falkenberg, T., Mohammed, A. K., Henriksson, B., Persson, H., Winblad, B., & Lindefors, N. (1992). Increased expression of brain-derived neurotrophic factor mRNA in rat hippocampus is associated with improved spatial memory and enriched environment. Neuroscience Letters, 138(1), 153–156. doi:10.1016/0304-3940(92)90494-R
  • Fuenzalida, K. M., Aguilera, M. C., Piderit, D. G., Ramos, P. C., Contador, D., Quinones, V., Rigotti, A., Bronfman, F. C., & Bronfman, M. (2005). Peroxisome proliferator-activated receptor is a novel target of the nerve growth factor signaling pathway in PC12 cells. Journal of Biological Chemistry, 280(10), 9604–9609. doi:10.1074/jbc.M409447200
  • Gauthier, A., Vassiliou, G., Benoist, F., & Mcpherson, R. (2003). Adipocyte low density lipoprotein receptor-related protein gene expression and function is regulated by peroxisome proliferator-activated receptor γ. Journal of Biological Chemistry, 278(14), 11945–11953. doi:10.1074/jbc.M212989200
  • GN S, H. S., Rajalekshmi, S. G., Murahari, M., & Burri, R. R. (2019). Reappraisal of FDA approved drugs against Alzheimer’s disease based on differential gene expression and protein interaction network analysis: An in silico approach. Journal of Biomolecular Structure and Dynamics, 1–18. doi:10.1080/07391102.2019.1671231
  • Govindarajulu, M., Pinky, P. D., Bloemer, J., Ghanei, N., Suppiramaniam, V., & Amin, R. (2018). Signaling mechanisms of selective PPARγ modulators in Alzheimer’s Disease. PPAR Research, 2018, 1–20. doi:10.1155/2018/2010675
  • Heneka, M. T., Klockgether, T., & Feinstein, D. L. (2000). Peroxisome proliferator-activated receptor-γ ligands reduce neuronal inducible nitric oxide synthase expression and cell death in vivo. The Journal of Neuroscience, 20(18), 6862–6867. doi:10.1523/JNEUROSCI.20-18-06862.2000
  • Horn, H. W., Swope, W. C., Pitera, J. W., Madura, J. D., Dick, T. J., Hura, G. L., & Head-Gordon, T. (2004). Development of an improved four-site water model for biomolecular simulations: TIP4P-Ew. The Journal of Chemical Physics, 120(20), 9665–9678. doi:10.1063/1.1683075
  • Inestrosa, N., & Tapia-Rojas, C. (2018). Loss of canonical Wnt signaling is involved in the pathogenesis of Alzheimers disease. Neural Regeneration Research, 13(10), 1705. doi:10.4103/1673-5374.238606
  • Inestrosa, N. C., & Varela-Nallar, L. (2014). Wnt signaling in the nervous system and in Alzheimers disease. Journal of Molecular Cell Biology, 6(1), 64–74. doi:10.1093/jmcb/mjt051
  • Islam, M. A., & Pillay, T. S. (2019). β-secretase inhibitors for Alzheimer’s disease: Identification using pharmacoinformatics. Journal of Biomolecular Structure and Dynamics, 37(2), 503–522. doi:10.1080/07391102.2018.1430619
  • Jang, J. Y., Bae, H., Lee, Y. J., Choi, Y. I., Kim, H.-J., Park, S. B., Suh, S. W., Kim, S. W., & Han, B. W. (2018). Structural basis for the enhanced anti-diabetic efficacy of lobeglitazone on PPARγ. Scientific Reports, 8(1), 2045-2322. doi:10.1038/s41598-017-18274-1
  • Kapadia, R. (2008). Mechanisms of anti-inflammatory and neuroprotective actions of PPAR-gamma agonists. Frontiers in Bioscience, 13(13), 1813. doi:10.2741/2802
  • Kim, S., Chen, J., Cheng, T., Gindulyte, A., He, J., He, S., Li, Q., Shoemaker, B. A., Thiessen, P. A., Yu, B., Zaslavsky, L., Zhang, J., & Bolton, E. E. (2019). PubChem 2019 update: Improved access to chemical data. Nucleic Acids Research, 47(D1), D1102–D1109. doi:10.1093/nar/gky1033
  • Kroker, A. J., & Bruning, J. B. (2015). Review of the structural and dynamic mechanisms of PPARγ partial agonism. PPAR Research, 2015, 1–15. doi:10.1155/2015/816856
  • Lemkul, J. A., Lewis, S. N., Bassaganya-Riera, J., & Bevan, D. R. (2015). Phosphorylation of PPARγ affects the collective motions of the PPARγ-RXRα-DNA complex. Plos One, 10(5). doi:, e0123984. 1371/journal.pone.0123984 doi:10.1371/journal.pone.0123984
  • Lenglet, S., Montecucco, F., & Mach, F. (2015). Role of matrix Metalloproteinases in animal models of ischemic stroke. Current Vascular Pharmacology, 13(2), 161–166. doi:10.2174/15701611113116660161
  • Lillis, A. P., Duyn, L. B. V., Murphy-Ullrich, J. E., & Strickland, D. K. (2008). LDL receptor-related protein 1: Unique tissue-specific functions revealed by selective gene knockout studies. Physiological Reviews, 88(3), 887–918. doi:10.1152/physrev.00033.2007
  • Linnertz, C., Anderson, L., Gottschalk, W., Crenshaw, D., Lutz, M. W., Allen, J., Saith, S., Mihovilovic, M., Burke, J. R., Welsh-Bohmer, K. A., Roses, A. D., & Chiba-Falek, O. (2014). The cis-regulatory effect of an Alzheimers disease-associated poly-T locus on expression of TOMM40 and apolipoprotein E genes. Alzheimer's & Dementia, 10(5), 541–551. doi:10.1016/j.jalz.2013.08.280
  • Mallick, B. (2018). Molecular dynamics simulations reveal the role of ceramicine B as novel PPARγ partial agonist against type 2 diabetes. arXiv:1808.08375.
  • Monsalve, F. A., Pyarasani, R. D., Delgado-Lopez, F., & Moore-Carrasco, R. (2013). Peroxisome proliferator-activated receptor targets for the treatment of metabolic diseases. Mediators of Inflammation, 2013, 1–18. doi:10.1155/2013/549627
  • Moon, J. H., Kim, H. J., Kim, H. M., Yang, A. H., Lee, B.-W., Kang, E. S., Lee, H. C., & Cha, B. S. (2012). Upregulation of hepatic LRP1 by rosiglitazone: A possible novel mechanism of the beneficial effect of thiazolidinediones on atherogenic dyslipidemia. Journal of Molecular Endocrinology, 49(3), 165–174. doi:10.1530/JME-12-0119
  • Mulder, M., Bogie, J., Hoeks, C., Schepers, M., Tuabe, A., Leijten, F., Chintapakorn, Y., Struik, D., Liu, H. B., Hellings, N., Martinez-Martinez, P., Jonker, J., Dewachter, I., Walter, J., Hendriks, J., Groen, A., Staels, B., Lutjohann, D., & Vanmierlo, T. (2019). Dietary sargassum fusiforme improves memory and reduces amyloid plaque load in an Alzheimer’s disease mouse model. Atherosclerosis, 287, e57. doi:10.1016/j.atherosclerosis.2019.06.161
  • Naqvi, A. A. T., Jairajpuri, D. S., Noman, O. M. A., Hussain, A., Islam, A., Ahmad, F., Alajmi, M. F., & Hassan, M. I. (2019). Evaluation of pyrazolopyrimidine derivatives as microtubule affinity regulating kinase 4 inhibitors: Towards therapeutic management of Alzheimer’s disease. Journal of Biomolecular Structure and Dynamics, 1–16. doi:10.1080/07391102.2019.1666745
  • Olasehinde, T. A., Olaniran, A. O., & Okoh, A. I. (2019). Aqueous–ethanol extracts of some South African seaweeds inhibit beta‐amyloid aggregation, cholinesterases, and beta‐secretase activities in vitro. Journal of Food Biochemistry, 43(7), e12870. doi:10.1111/jfbc.12870
  • Ott, A., Stolk, R. P., Van Harskamp, F., Pols, H. A. P., Hofman, A., & Breteler, M. M. B. (1999, January). Diabetes mellitus and the risk of dementia: The Rotterdam study. Neurology, 53(9), 1937–1937. doi:10.1212/WNL.53.9.1937
  • Pedersen, W. A., Mcmillan, P. J., Kulstad, J. J., Leverenz, J. B., Craft, S., & Haynatzki, G. R. (2006). Rosiglitazone attenuates learning and memory deficits in Tg2576 Alzheimer mice. Experimental Neurology, 199(2), 265–273. doi:10.1016/j.expneurol.2006.01
  • Plattner, F., Angelo, M., & Giese, K. P. (2006). The roles of cyclin-dependent kinase 5 and glycogen synthase kinase 3 in tau hyperphosphorylation. Journal of Biological Chemistry, 281(35), 25457–25465. doi:10.1074/jbc.M603469200
  • Ramanathan, A., Nelson, A. R., Sagare, A. P., & Zlokovic, B. V. (2015). Impaired vascular-mediated clearance of brain amyloid beta in Alzheimer’s disease: The role, regulation and restoration of LRP1. Frontiers in Aging Neuroscience, 7, 1–136. doi:10.3389/fnagi.2015.00136
  • Ricote, M., Li, A. C., Willson, T. M., Kelly, C. J., & Glass, C. K. (1998). The peroxisome proliferator-activated receptor-γ is a negative regulator of macrophage activation. Nature, 391(6662), 79–82. doi:10.1038/34178
  • Roos, K., Wu, C., Damm, W., Reboul, M., Stevenson, J. M., Lu, C., Dahlgren, M. K., Mondal, S., Chen, W., Wang, L., Abel, R., Friesner, R. A., & Harder, E. D. (2019). OPLS3e: Extending force field coverage for drug-like small molecules. Journal of Chemical Theory and Computation, 15(3), 1863–1874. doi:10.1021/acs.jctc.8b01026
  • Schrödinger Release 2018- (2018). 4: Desmond Molecular Dynamics System, D. E. Shaw Research, New York, NY, 2018. Maestro-Desmond Interoperability Tools, Schrödinger, New York, NY,
  • Schrödinger Release 2018-4: Glide, Schrödinger, LLC, New York, NY, (2018).
  • Schrödinger Release 2018-4: LigPrep, Schrödinger, LLC, New York, NY, (2018).
  • Schrödinger Release 2018-4: Prime, Schrödinger, LLC, New York, NY, (2018).
  • Schrödinger Release 2018-4: Protein Preparation Wizard; Epik, Schrödinger, LLC, New York, NY, 2016; Impact, Schrödinger, LLC, New York, NY, (2016).
  • Schrödinger Release 2018-4: QikProp, Schrödinger, LLC, New York, NY, (2018).
  • Shamsi, A., Shahwan, M. A., Ahamad, S., Hassan, M. I., Ahmad, F., & Islam, A. (2020). Spectroscopic, calorimetric and molecular docking insight into the interaction of Alzheimer’s drug donepezil with human transferrin: Implications of Alzheimer’s drug. Journal of Biomolecular Structure and Dynamics, 38(4), 1094–1102. doi:10.1080/07391102.2019
  • Shang, J., Brust, R., Mosure, S. A., Bass, J., Munoz-Tello, P., Lin, H., … Kojetin, D. J. (2018). Cooperative cobinding of synthetic and natural ligands to the nuclear receptor PPARγ. eLife, 7, e43320. doi:10.7554/elife.43320.077
  • Sharma, S., Singh, N., Nepovimova, E., Korabecny, J., Kuca, K., Satnami, M. L., & Ghosh, K. K. (2019). Interaction of synthesized nitrogen enriched graphene quantum dots with novel anti-Alzheimer’s drugs: Spectroscopic insights. Journal of Biomolecular Structure and Dynamics, 38(6), 1822–1837. doi:10.1080/07391102.2019.1619625
  • Subramanian, S., Gottschalk, W. K., Kim, S. Y., Roses, A. D., & Chiba-Falek, O. (2017). The effects of PPARγ on the regulation of the TOMM40 - APOE - C1 genes cluster. Biochimica Et Biophysica Acta (BBA) - Molecular Basis of Disease, 1863(3), 810–816. doi:10.1016/j.bbadis.2017.01.004
  • Thouennon, E., Cheng, Y., Falahatian, V., Cawley, N. X., & Loh, Y. P. (2015). Rosiglitazone-activated PPARγ induces neurotrophic factor-α1 transcription contributing to neuroprotection. Journal of Neurochemistry, 134(3), 463–470. doi:10.1111/jnc.13152
  • Uppenberg, J., Svensson, C., Jaki, M., Bertilsson, G., Jendeberg, L., & Berkenstam, A. (1998). Crystal structure of the ligand binding domain of the human nuclear receptor PPARγ. Journal of Biological Chemistry, 273(47), 31108–31112. doi:10.1074/jbc.273.47.31108
  • Wang, X., Sun, G., Feng, T., Zhang, J., Huang, X., Wang, T., Xie, Z., Chu, X., Yang, J., Wang, H., Chang, S., Gong, Y., Ruan, L., Zhang, G., Yan, S., Lian, W., Du, C., Yang, D., Zhang, Q., … Geng, M. (2019). Sodium oligomannate therapeutically remodels gut microbiota and suppresses gut bacterial amino acids-shaped neuroinflammation to inhibit Alzheimer’s disease progression. Cell Research, 29(10), 787–803. doi:10.1038/s41422-019-0216-x
  • Zafar, R., Zubair, M., Ali, S., Shahid, K., Waseem, W., Naureen, H., … Sadiq, A. (2020). Zinc metal carboxylates as potential anti-Alzheimer’s candidate: In vitro anticholinesterase, antioxidant and molecular docking studies. Journal of Biomolecular Structure and Dynamics, 1–11. doi:10.1080/07391102.2020.1724569

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.