365
Views
14
CrossRef citations to date
0
Altmetric
Research Articles

DNA binding, antibacterial, hemolytic and anticancer studies of some fluorescent emissive surfactant-ruthenium(II) complexes

ORCID Icon, ORCID Icon, , , &
Pages 2242-2256 | Received 03 Feb 2020, Accepted 18 Mar 2020, Published online: 15 Apr 2020

References

  • Ahmad Khan, R., Al-Lohedan, H. A., Abul Farah, M., Sajid Ali, M., Alsalme, A., Mashay Al-Anazi, K., & Tabassum, S. (2019). Evaluation of (ɳ6-p-cymene) ruthenium diclofenac complex as anticancer chemotherapeutic agent: Interaction with biomolecules, cytotoxicity assays. Journal of Biomolecular Structure and Dynamics, 37(15), 3905–3913. doi:10.1080/07391102.2018.1528180
  • Altıntop, M. D., Özdemir, A., Turan-Zitouni, G., Ilgın, S., Atlı, Ö., Demirel, R., & Kaplancıklı, Z. A. (2015). A Novel Series of thiazolyl-pyrazoline derivatives: Synthesis and evaluation of antifungal activity, cytotoxicity and genotoxicity. European Journal of Medicinal Chemistry, 92, 342–352. doi:10.1016/j.ejmech.2014.12.055
  • Anish Babu, A., Karthick, K., Subramanian, R., & Swarnalatha, K. (2019). Exploring the structural interaction of BSA with amine functionalized ruthenium (II) metal complex. Journal of Biomolecular Structure and Dynamics, 1–8.
  • Azrak, R. G., Frank, C. L., Ling, X., Slocum, H. K., Li, F., Foster, B. A., & Rustum, Y. M. (2006). The mechanism of methylselenocysteine and docetaxel synergistic activity in prostate cancer cells. Molecular Cancer Therapeutics, 5(10), 2540–2548. doi:10.1158/1535-7163.MCT-05-0546
  • Barton, J. K. (1986). Metals and DNA: Molecular left-handed complements. Science, 233(4765), 727–734. doi:10.1126/science.3016894
  • Bauer, A., Kirby, W., Sherris, J. C., & Turck, M. (1966). Antibiotic susceptibility testing by a standardized single disk method. American Journal of Clinical Pathology, 45(4_ts), 493–496. doi:10.1093/ajcp/45.4_ts.493
  • Benhar, M., Engelberg, D., & Levitzki, A. (2002). ROS, stress‐activated kinases and stress signaling in cancer. EMBO Reports, 3(5), 420–425. doi:10.1093/embo-reports/kvf094
  • Boerner, L. J., & Zaleski, J. M. (2005). Metal complex–DNA interactions: From transcription inhibition to photoactivated cleavage. Current Opinion in Chemical Biology, 9(2), 135–144. doi:10.1016/j.cbpa.2005.02.010
  • Chao, H., Mei, W.-J., Huang, Q.-W., & Ji, L.-N. (2002). DNA binding studies of ruthenium(II) complexes containing asymmetric tridentate ligands. Journal of Inorganic Biochemistry, 92(3–4), 165–170. doi:10.1016/S0162-0134(02)00543-3
  • Cheng, C., & Ran, S.-Y. (2014). Interaction between DNA and trimethyl-ammonium bromides with different alkyl chain lengths. The Scientific World Journal, 2014, 1–9. doi:10.1155/2014/863049
  • Cohen, G., & Eisenberg, H. (1969). Viscosity and sedimentation study of sonicated DNA–proflavine complexes. Biopolymers, 8(1), 45–55. doi:10.1002/bip.1969.360080105
  • Donohue, J., & Trueblood, K. N. (1960). Base pairing in DNA. Journal of Molecular Biology, 2(6), 363–371. doi:10.1016/S0022-2836(60)80047-2
  • Green, L. C., Wagner, D. A., Glogowski, J., Skipper, P. L., Wishnok, J. S., & Tannenbaum, S. R. (1982). Analysis of nitrate, nitrite, and [15 N] nitrate in biological fluids. Analytical Biochemistry, 126(1), 131–138. doi:10.1016/0003-2697(82)90118-X
  • Gultneh, Y., Khan, A. R., Blaise, D., Chaudhry, S., Ahvazi, B., Marvey, B. B., & Butcher, R. J. (1999). Syntheses and structures of and catalysis of hydrolysis by Zn (II) complexes of chelating pyridyl donor ligands. Journal of Inorganic Biochemistry, 75(1), 7–18. doi:10.1016/S0162-0134(99)00025-2
  • Gupta, R. K., Pandey, R., Sharma, G., Prasad, R., Koch, B., Srikrishna, S., Li, P.-Z., Xu, Q., & Pandey, D. S. (2013). DNA binding and anti-cancer activity of redox-active heteroleptic piano-stool Ru(II), Rh(III), and Ir(III) complexes containing 4-(2-methoxypyridyl) phenyldipyrromethene. Inorganic Chemistry, 52(7), 3687–3698. doi:10.1021/ic302196v
  • Gupta, R. K., Sharma, G., Pandey, R., Kumar, A., Koch, B., Li, P.-Z., Xu, Q., & Pandey, D. S. (2013). DNA/protein binding, molecular docking, and in vitro anticancer activity of some thioether-dipyrrinato complexes. Inorganic Chemistry, 52(24), 13984–13996. doi:10.1021/ic401662d
  • Jagadeesan, S., Balasubramanian, V., Baumann, P., Neuburger, M., Häussinger, D., & Palivan, C. G. (2013). Water-soluble Co(III) complexes of substituted phenanthrolines with. Inorganic Chemistry, 52(21), 12535–12544. doi:10.1021/ic4016228
  • Jiang, C.-W., Chao, H., Li, H., & Ji, L.-N. (2003). Syntheses, characterization and DNA-binding studies of ruthenium(II) terpyridine complexes: [Ru(tpy)(PHBI)]2+ and [Ru(tpy)(PHNI)]2+. Journal of Inorganic Biochemistry, 93(3-4), 247–255. doi:10.1016/S0162-0134(02)00577-9
  • Johnson, L. V., Walsh, M. L., & Chen, L. B. (1980). Localization of mitochondria in living cells with rhodamine 123. Proceedings of the National Academy of Sciences United States of America, 77(2), 990–994. doi:10.1073/pnas.77.2.990
  • Joshi, B., Barman, I., Dingari, N. C., Cardenas, N., Soares, J. S., Dasari, R. R., & Mohanty, S. (2013). Label-free route to rapid, nanoscale characterization of cellular structure and dynamics through opaque media. Scientific Reports, 3(1) doi:10.1038/srep02822
  • Karlsson, L., van Eijk, M. C., & Söderman, O. (2002). Compaction of DNA by gemini surfactants: Effects of surfactant architecture. Journal of Colloid and Interface Science, 252(2), 290–296. doi:10.1006/jcis.2002.8477
  • Kelly, J. M., Tossi, A. B., McConnell, D. J., & OhUigin, C. (1985). A study of the interactions of some polypyridylruthenium(II) complexes with DNA using fluorescence spectroscopy, topoisomerisation and thermal denaturation. Nucleic Acids Research, 13(17), 6017–6034. doi:10.1093/nar/13.17.6017
  • Kumar, C., & Asuncion, E. H. (1993). DNA binding studies and site selective fluorescence sensitization of an anthryl probe. Journal of the American Chemical Society, 115(19), 8547–8553. doi:10.1021/ja00072a004
  • Kumar, L. S., Prasad, K. S., & Revanasiddappa, H. D. (2011). Synthesis, characterization, antioxidant, antimicrobial, DNA binding and cleavage studies of mononuclear Cu (II) and Co (II) complexes of 3-hydroxy-N’-(2-hydroxybenzylidene)-2-naphthohydrazide. European Journal of Chemistry, 2(3), 394–403. doi:10.5155/eurjchem.2.3.394-403.232
  • Kumar, P., Senthamilselvi, S., Govindaraju, M., & Sankar, R. (2014). Unraveling the caspase-mediated mechanism for phloroglucinol-encapsulated starch biopolymer against the breast cancer cell line MDA-MB-231. RSC Advances, 4(86), 46157–46163. doi:10.1039/C4RA06664B
  • Kumar, R. S., & Arunachalam, S. (2008). Synthesis, micellar properties, DNA binding and antimicrobial studies of some surfactant–cobalt (III) complexes. Biophysical Chemistry, 136(2-3), 136–144. doi:10.1016/j.bpc.2008.05.007
  • Kumar, R. S., Arunachalam, S., Periasamy, V. S., Preethy, C. P., Riyasdeen, A., & Akbarsha, M. A. (2009). Micellization behaviour, DNA binding, antimicrobial, and cytotoxicity studies of surfactant–cobalt(III) complexes containing di-and tetramine ligands. Australian Journal of Chemistry, 62(2), 165–175. doi:10.1071/CH08281
  • Lakshmipraba, J., Arunachalam, S., Solomon, R. V., Venuvanalingam, P., Riyasdeen, A., Dhivya, R., & Akbarsha, M. A. (2015). Surfactant–copper (II) Schiff base complexes: Synthesis, structural investigation, DNA interaction, docking studies, and cytotoxic activity. Journal of Biomolecular Structure and Dynamics, 33(4), 877–891. doi:10.1080/07391102.2014.918523
  • Liu, J.-G., Ye, B.-H., Li, H., Ji, L.-N., Li, R.-H., & Zhou, J.-Y. (1999). Synthesis, characterization and DNA-binding properties of novel dipyridophenazine complex of ruthenium(II): [Ru(IP)2(DPPZ)]2+. Journal of Inorganic Biochemistry, 73(1–2), 117–122. doi:10.1016/S0162-0134(99)00011-2
  • Ma, D.-L., Che, C.-M., Siu, F.-M., Yang, M., & Wong, K.-Y. (2007). DNA binding and cytotoxicity of ruthenium (II) and rhenium (I) complexes of 2-amino-4-phenylamino-6-(2-pyridyl)-1, 3, 5-triazine. Inorganic Chemistry, 46(3), 740–749. doi:10.1021/ic061518s
  • Mahadevan, S., & Palaniandavar, M. (1997). Spectroscopic and voltammetric studies of copper (II) complexes of bis (pyrid-2-yl)-di/trithia ligands bound to calf thymus DNA. Inorganica Chimica Acta, 254(2), 291–302. doi:10.1016/S0020-1693(96)05175-4
  • Maheswari, P. U., & Palaniandavar, M. (2004). DNA binding and cleavage properties of certain tetrammine ruthenium(II) complexes of modified 1, 10-phenanthrolines–Effect of hydrogen-bonding on DNA-binding affinity. Journal of Inorganic Biochemistry, 98(2), 219–230. doi:10.1016/j.jinorgbio.2003.09.003
  • Marmur, J. (1961). A procedure for the isolation of deoxyribonucleic acid from micro-organisms. Journal of Molecular Biology, 3(2), 208–IN201. doi:10.1016/S0022-2836(61)80047-8
  • McGhee, J. D., & von Hippel, P. H. (1974). Theoretical aspects of DNA-protein interactions: Co-operative and non-co-operative binding of large ligands to a one-dimensional homogeneous lattice. Journal of Molecular Biology, 86(2), 469–489. doi:10.1016/0022-2836(74)90031-X
  • Mohammadi, F., & Mansouri-Torshizi, H. (2019). Five novel palladium (II) complexes of 8-hydroxyquinoline and amino acids with hydrophobic side chains: Synthesis, characterization, cytotoxicity, DNA-and BSA-interaction studies. Journal of Biomolecular Structure and Dynamics, 1–15. doi:10.1080/07391102.2019.1651219
  • Mosmann, T. (1983). Rapid colorimetric assay for cellular growth and survival: Application to proliferation and cytotoxicity assays. Journal of Immunological Methods, 65(1–2), 55–63. doi:10.1016/0022-1759(83)90303-4
  • Nagaraj, K., & Arunachalam, S. (2013). Studies on DNA binding of a double-chain surfactant cobalt(III) complex containing 2,2′-bipyridine ligand. Zeitschrift Für Physikalische Chemie, 227(12), 1687–1706. doi:10.1524/zpch.2013.0374
  • Nagaraj, K., Velmurugan, G., Sakthinathan, S., Venuvanalingam, P., & Arunachalam, S. (2014). Influence of self-assembly on intercalative DNA binding interaction of double-chain surfactant Co(iii) complexes containing imidazo[4, 5-f][1,10] phenanthroline and dipyrido[3,2-d: 2′-3′-f]quinoxaline ligands: Experimental and theoretical study. Dalton Transactions, 43(48), 18074–18086. doi:10.1039/C4DT02134G
  • Nehru, S., Arunachalam, S., Arun, R., & Premkumar, K. (2014). Polymer–cobalt(III) complexes: Structural analysis of metal chelates on DNA interaction and comparative cytotoxic activity. Journal of Biomolecular Structure and Dynamics, 32(11), 1876–1888. doi:10.1080/07391102.2013.836460
  • Nehru, S., Veeralakshmi, S., & Arunachalam, S. (2017). Synthesis, characterisation and self-assembly behaviour of emissive surfactant–ruthenium (ii) complexes. New Journal of Chemistry, 41(22), 13830–13837. doi:10.1039/C7NJ02698F
  • Nehru, S., Veeralakshmi, S., Kalaiselvam, S., David, S. S., Sandhya, J., & Arunachalam, S. (2020). Protein binding and antioxidant studies of diimine based emissive surfactant–ruthenium(II) complexes. Journal of Biomolecular Structure and Dynamics(Just-Accepted), 1–21.
  • Novakova, O., Kasparkova, J., Vrana, O., van Vliet, P. M., Reedijk, J., & Brabec, V. (1995). Correlation between cytotoxicity and DNA binding of polypyridyl ruthenium complexes. Biochemistry, 34(38), 12369–12378. doi:10.1021/bi00038a034
  • Obando, I., Camacho, M. S., Falcon-Neyra, D., Hurtado-Mingo, A., & Neth, O. (2012). Atypical hemolytic uremic syndrome associated with Bordetella pertussis infection. The Pediatric Infectious Disease Journal, 31(11), 1210.
  • Peacock, A. F., Habtemariam, A., Moggach, S. A., Prescimone, A., Parsons, S., & Sadler, P. J. (2007). Chloro half-sandwich osmium(II) complexes: Influence of chelated N,N-ligands on hydrolysis, guanine binding, and cytotoxicity. Inorganic Chemistry, 46(10), 4049–4059. doi:10.1021/ic062350d
  • Popescu, G. (2011). Quantitative phase imaging of cells and tissues. McGraw-Hill Professional.
  • Pyle, A., Rehmann, J., Meshoyrer, R., Kumar, C., Turro, N., & Barton, J. K. (1989). Mixed-ligand complexes of ruthenium(II): Factors governing binding to DNA. Journal of the American Chemical Society, 111(8), 3051–3058. doi:10.1021/ja00190a046
  • Rajendiran, V., Karthik, R., Palaniandavar, M., Stoeckli-Evans, H., Periasamy, V. S., Akbarsha, M. A., Srinag, B. S., & Krishnamurthy, H. (2007). Mixed-ligand copper(II)-phenolate complexes: Effect of coligand on enhanced DNA and protein binding, DNA cleavage, and anticancer activity. Inorganic Chemistry, 46(20), 8208–8221. doi:10.1021/ic700755p
  • Ramakrishnan, S., Suresh, E., Riyasdeen, A., Akbarsha, M. A., & Palaniandavar, M. (2011). Interaction of rac-[M(diimine)3]2+(M = Co, Ni) complexes with CT DNA: Role of 5, 6-dmp ligand on DNA binding and cleavage and cytotoxicity. Dalton Transactions, 40(13), 3245–3256. doi:10.1039/c0dt01360a
  • Rastogi, R. P., Singh, S. P., Häder, D.-P., & Sinha, R. P. (2010). Detection of reactive oxygen species (ROS) by the oxidant-sensing probe 2′, 7′-dichlorodihydrofluorescein diacetate in the cyanobacterium Anabaena variabilis PCC 7937. Biochemical and Biophysical Research Communications, 397(3), 603–607. doi:10.1016/j.bbrc.2010.06.006
  • Ross, P. D., & Subramanian, S. (1981). Thermodynamics of protein association reactions: Forces contributing to stability. Biochemistry, 20(11), 3096–3102. doi:10.1021/bi00514a017
  • Sharma, P., Jha, A. B., Dubey, R. S., & Pessarakli, M. (2012). Reactive oxygen species, oxidative damage, and antioxidative defense mechanism in plants under stressful conditions. Journal of Botany, 2012, 1–26. doi:10.1155/2012/217037
  • Suski, J. M., Lebiedzinska, M., Bonora, M., Pinton, P., Duszynski, J., & Wieckowski, M. R. (2012). Relation between mitochondrial membrane potential and ROS formation. In Mitochondrial Bioenergetics (pp. 183–205). Springer.
  • Tan, L.-F., Chen, X.-J., Shen, J.-L., & Liang, X.-L. (2009). Synthesis, DNA-binding and photocleavage studies of Ru(II) complexes of phenyl-(4, 5, 9, 14-tetraaza-benzo[b]triphenylen-1,1-yl)-methanone. Journal of Chemical Sciences, 121(4), 397–405. doi:10.1007/s12039-009-0046-3
  • Vaidyanathan, V., & Nair, B. U. (2005). Synthesis, characterization and electrochemical studies of mixed ligand complexes of ruthenium(II) with DNA. Dalton Transactions, (17), 2842–2848. doi:10.1039/b502917a
  • Vaidyanathan, V. G., & Nair, B. U. (2003). Synthesis, characterization, and DNA binding studies of a chromium(III) complex containing a tridentate ligand. European Journal of Inorganic Chemistry, 2003(19), 3633–3638. doi:10.1002/ejic.200300170
  • Veeralakshmi, S., Nehru, S., Sabapathi, G., Arunachalam, S., Venuvanalingam, P., Kumar, P., Anusha, C., & Ravikumar, V. (2015). Single and double chain surfactant–cobalt(III) complexes: The impact of hydrophobicity on the interaction with calf thymus DNA, and their biological activities. RSC Advances, 5(40), 31746–31758. doi:10.1039/C5RA02763B
  • Wang, C., Wettig, S. D., Foldvari, M., & Verrall, R. E. (2007). Synthesis, characterization, and use of asymmetric pyrenyl-gemini surfactants as emissive components in DNA-lipoplex systems. Langmuir, 23(17), 8995–9001. doi:10.1021/la0635911
  • Wang, Z., Liu, Y., & Cui, Y. (2005). Pathways to caspase activation. Cell Biology International, 29(7), 489–496. doi:10.1016/j.cellbi.2005.04.001
  • Wiegand, I., Hilpert, K., & Hancock, R. E. (2008). Agar and broth dilution methods to determine the minimal inhibitory concentration (MIC) of antimicrobial substances. Nature Protocols, 3(2), 163–175. doi:10.1038/nprot.2007.521
  • Yadav, S., & Singh, J. D. (2019). Synthesis and preliminary biological evaluation for the anticancer activity of organochalcogen (S/se) tethered chrysin-based organometallic RuII (η6-p-cymene) complexes. Journal of Biomolecular Structure and Dynamics, 37(13), 3337–3353. doi:10.1080/07391102.2018.1513867
  • Yu, M., Ding, Z., Jiang, F., Ding, X., Sun, J., Chen, S., & Lv, G. (2011). Analysis of binding interaction between pegylated puerarin and bovine serum albumin by spectroscopic methods and dynamic light scattering. Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy, 83(1), 453–460. doi:10.1016/j.saa.2011.08.065
  • Yuan, J.-P., Wang, G.-H., Ling, H., Su, Q., Yang, Y.-H., Song, Y., Tang, R.-J., Liu, Y., & Huang, C. (2004). Diallyl disulfide-induced G2/M arrest of human gastric cancer MGC803 cells involves activation of p38 MAP kinase pathways. World Journal of Gastroenterology, 10(18), 2731–2734. doi:10.3748/wjg.v10.i18.2731
  • Zehra, S., Shavez Khan, M., Ahmad, I., & Arjmand, F. (2019). New tailored substituted benzothiazole Schiff base Cu (II)/Zn (II) antitumor drug entities: Effect of substituents on DNA binding profile, antimicrobial and cytotoxic activity. Journal of Biomolecular Structure and Dynamics, 37(7), 1863–1879. doi:10.1080/07391102.2018.1467794

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.