372
Views
9
CrossRef citations to date
0
Altmetric
Research Articles

Global transcriptome analysis of novel stress associated protein (SAP) genes expression dynamism of combined abiotic stresses in Oryza sativa (L.)

, , , , , ORCID Icon & show all
Pages 2106-2117 | Received 09 Oct 2019, Accepted 13 Mar 2020, Published online: 10 Apr 2020

References

  • Atkinson, N. J., & Urwin, P. E. (2012). The interaction of plant biotic and abiotic stresses: From genes to the field. Journal of Experimental Botany, 63(10), 3523–3543. doi:10.1093/jxb/ers100
  • Cooper, B., Clarke, J. D., Budworth, P., Kreps, J., Hutchison, D., Park, S., Guimil, S., Dunn, M., Luginbuhl, P., Ellero, C., Goff, S. A., & Glazebrook, J. (2003). A network of rice genes associated with stress response and seed development. Proceedings of the National Academy of Sciences, 100(8), 4945–4950. doi:10.1073/pnas.0737574100
  • Dansana, P. K., Kothari, K. S., Vij, S., & Tyagi, A. K. (2014). OsiSAP1 overexpression improves water-deficit stress tolerance in transgenic rice by affecting expression of endogenous stress-related genes. Plant Cell Reports, 33(9), 1425–1440. doi:10.1007/s00299-014-1626-3
  • Dixit, A. R., & Dhankher, O. P. (2011). A novel stress-associated protein ‘AtSAP10’from Arabidopsis thaliana confers tolerance to nickel, manganese, zinc, and high temperature stress. PLoS One., 6(6), e20921. doi:10.1371/journal.pone.0020921
  • Dixit, V. M., Green, S., Sarma, V., Holzman, L. B., Wolf, F. W., O’Rourke, K., Ward, P. A., Prochownik, E. V., & Marks, R. M. (1990). Tumor necrosis factor – alpha induction of novel gene products in human endothelial cells including a macrophage – specific chemotaxin. Journal of Biological Chemistry, 265, 2973–2978.
  • Evans, P. C., Huib, O. V. A. A., Hamon, M., Kilshaw, P. J., Svetlana, H. A. M. M., Bauer, S., Ploegh, H. L., & Smith, T. S. (2004). Zinc-finger protein A20, a regulator of inflammation and cell survival, has de-ubiquitinating activity. Biochemical Journal, 378(3), 727–734. doi:10.1042/bj20031377
  • Gasteiger, E., Hoogland, C., Gattiker, A., Wilkins, M. R., Appel, R. D., & Bairoch, A. (2005). Protein identification and analysis tools on the ExPASy server. In J. M. Walker (Ed.), The proteomics protocols handbook (pp. 571–607). Springer.
  • Gupta, A., Hisano, H., Hojo, Y., Matsuura, T., Ikeda, Y., Mori, I. C., & Senthil-Kumar, M. (2017). Global profiling of phytohormone dynamics during combined drought and pathogen stress in Arabidopsis thaliana reveals ABA and JA as major regulators. Scientific Reports, 7(1), 4017. doi:10.1038/s41598-017-03907-2
  • Hernandez-Garcia, C. M., & Finer, J. J. (2014). Identification and validation of promoters and cis-acting regulatory elements. Plant Science, 217-218, 109–119. doi:10.1016/j.plantsci.2013.12.007
  • Heyninck, K., & Beyaert, R. (2005). A20 inhibits NF-B activation by dual ubiquitin-editing functions. Trends in Biochemical Sciences, 30(1), 1–4. doi:10.1016/j.tibs.2004.11.001
  • Higo, K., Ugawa, Y., Iwamoto, M., & Korenaga, T. (1999). Plant cis-acting regulatory DNA elements (PLACE) database:1999. Nucleic Acids Research, 27(1), 297–300. doi:10.1093/nar/27.1.297
  • Hishiya, A., Iemura, S. I., Natsume, T., Takayama, S., Ikeda, K., & Watanabe, K. A. (2006). novel ubiquitin‐binding protein ZNF216 functioning in muscle atrophy. The EMBO Journal, 25(3), 554–564. doi:10.1038/sj.emboj.7600945
  • Hou, L., Chen, L., Wang, J., Xu, D., Dai, L., Zhang, H., & Zhao, Y. (2012). Construction of stress responsive synthetic promoters and analysis of their activity in transgenic Arabidopsis thaliana. Plant Molecular Biology Reporter, 30(6), 1496–1506. doi:10.1007/s11105-012-0464-0
  • Hu, B., Jin, J., Guo, A. Y., Zhang, H., Luo, J., & Gao, G. (2015). GSDS 2.0: An upgraded gene feature visualization server. Bioinformatics, 31(8), 1296–1297. doi:10.1093/bioinformatics/btu817
  • Huang, J., Teng, L., Li, L., Liu, T., Li, L., Chen, D., Xu, L.-G., Zhai, Z., & Shu, H.-B. (2004). ZNF216 is an A20-like and IkappaB kinase gamma-interacting inhibitor of NFkappaB activation. Journal of Biological Chemistry, 279(16), 16847–16853. doi:10.1074/jbc.M309491200
  • International Rice Genome Sequencing Project. (2005). The map-based sequence of the rice genome. Nature, 436, 793–800.
  • Jain, M., Khurana, P., Tyagi, A. K., & Khurana, J. P. (2008). Genome-wide analysis of intronless genes in rice and Arabidopsis. Functional & Integrative Genomics, 8(1), 69–78. doi:10.1007/s10142-007-0052-9
  • Kanneganti, V., & Gupta, A. K. (2008). Overexpression of OsiSAP8, a member of stress associated protein (SAP) gene family of rice confers tolerance to salt, drought and cold stress in transgenic tobacco and rice. Plant Molecular Biology, 66(5), 445–462. doi:10.1007/s11103-007-9284-2
  • Kavar, T., Maras, M., Kidric, M., Sustar-Vozlic, J., & Meglic, V. (2008). Identification of genes involved in the response of leaves of Phaseolus vulgaris to drought stress. Molecular Breeding, 21(2), 159–172. doi:10.1007/s11032-007-9116-8
  • Kothari, K. S., Dansana, P. K., Giri, J., & Tyagi, A. K. (2016). Rice Stress Associated Protein 1 (OsSAP1) Interacts with Aminotransferase (OsAMTR1) and Pathogenesis- Related 1a Protein (OsSCP) and Regulates Abiotic Stress Responses. Frontiers in Plant Science, 7, 1–16. doi:10.3389/fpls.2016.01057
  • Krzywinski, M., Schein, J., Birol, I., Connors, J., Gascoyne, R., Horsman, D., Jones, S. J., & Marra, M. A. (2009). Circos: An information aesthetic for comparative genomics. Genome Research, 19(9), 1639–1645. doi:10.1101/gr.092759.109
  • Kumar, S., Stecher, G., & Tamura, K. (2016). MEGA7: Molecular evolutionary genetics analysis version 7.0 for bigger datasets. Molecular Biology and Evolution, 33(7), 1870–1874. doi:10.1093/molbev/msw054
  • Lesk, C., Rowhani, P., & Ramankutty, N. (2016). Influence of extreme weather disasters on global crop production. Nature, 529(7584), 84–87. doi:10.1038/nature16467
  • Liang, M. H., & Jiang, J. G. (2017). Analysis of carotenogenic genes promoters and WRKY transcription factors in response to salt stress in Dunaliella bardawil. Scientific Reports, 7(1), 37025.
  • Linnen, J. M., Bailey, C. P., & Weeks, D. L. (1993). Two related localized mRNAs from Xenopus laevis encode ubiquitin-like fusion proteins. Gene , 128(2), 181–188. doi:10.1016/0378-1119(93)90561-G
  • Livak, K. J., & Schmittgen, T. D. (2001). Analysis of relative gene expression data using real-time quantitative PCR and the 2- ΔΔCT method. Methods, 25(4), 402–408. doi:10.1006/meth.2001.1262
  • Mukhopadhyay, A., Vij, S., & Tyagi, A. K. (2004). Overexpression of a zinc-finger protein gene from rice confers tolerance to cold, dehydration, and salt stress in transgenic tobacco. Proceedings of the National Academy of Sciences, 101(16), 6309–6314. doi:10.1073/pnas.0401572101
  • Muthuramalingam, P., Krishnan, S. R., Saravanan, K., Mareeswaran, N., Kumar, R., & Ramesh, M. (2018). Genome-wide identification of major transcription factor superfamilies in rice identifies key candidates involved in abiotic stress dynamism. Journal of Plant Biochemistry and Biotechnology, 27(3), 300–317. doi:10.1007/s13562-018-0440-3
  • Muthuramalingam, P., Krishnan, S. R., Pandian, S., Mareeswaran, N., Aruni, W., Pandian, S. K., & Ramesh, M. (2018). Global analysis of threonine metabolism genes unravel key players in rice to improve the abiotic stress tolerance. Scientific Reports, 8(1), 9270. doi:10.1038/s41598-018-27703-8
  • Muthuramalingam, P., Jeyasri, R., Bharathi, R. K. A. S., Suba, V., Pandian, S. T. K., & Ramesh, M. (2020). Global integrated omics expression analyses of abiotic stress signaling HSF transcription factor genes in Oryza sativa L.: An in silico approach. Genomics, 112(1), 908–918. doi:10.1016/j.ygeno.2019.06.006
  • Muthuramalingam, P., Krishnan, S. R., Pothiraj, R., & Ramesh, M. (2017). Global transcriptome analysis of combined abiotic stress signaling genes unravels key players in Oryza sativa L.: An in silico approach. Frontiers in Plant Science, 8, 759. doi:10.3389/fpls.2017.00759
  • Nakashima, K., Takasaki, H., Mizoi, J., Shinozaki, K., & Yamaguchi-Shinozaki, K. (2012). NAC transcription factors in plant abiotic stress responses. Biochimica et Biophysica Acta (Bba) - Gene Regulatory Mechanisms, 1819(2), 97–103. doi:10.1016/j.bbagrm.2011.10.005
  • Narusaka, Y., Nakashima, K., Shinwari, Z. K., Sakuma, Y., Furihata, T., Abe, H., Narusaka, M., Shinozaki, K., & Yamaguchi‐Shinozaki, K. (2003). Interaction between two cis-acting elements, ABRE and DRE, in ABA-dependent expression of Arabidopsis rd29A gene in response to dehydration and high-salinity stresses. The Plant Journal, 34(2), 137–148. doi:10.1046/j.1365-313X.2003.01708.x
  • Qin, F., Shinozaki, K., & Yamaguchi-Shinozaki, K. (2011). Achievements and Challenges in Understanding Plant Abiotic Stress Responses and Tolerance. Plant and Cell Physiology, 52(9), 1569–1582. doi:10.1093/pcp/pcr106
  • Rejeb, I., Pastor, V., & Mauch-Mani, B. (2014). Plant Responses to Simultaneous Biotic and Abiotic Stress: Molecular Mechanisms. Plants, 3(4), 458–475. doi:10.3390/plants3040458
  • Sato, Y., Takehisa, H., Kamatsuki, K., Minami, H., Namiki, N., Ikawa, H., Ohyanagi, H., Sugimoto, K., Antonio, B. A., & Nagamura, Y. (2013). RiceXPro Version 3.0: Expanding the informatics resource for rice transcriptome. Nucleic Acids Research, 41(D1), D1206–D1213. doi:10.1093/nar/gks1125
  • Sharma, Y. K., Hinojos, C. M., & Mehdy, M. C. (1992). cDNA cloning, structure and expression of a novel pathogenesis-related protein in bean. Molecular Plant-Microbe Interactions, 5(1), 89–95. doi:10.1094/MPMI-5-089
  • Szklarczyk, D., Morris, J. H., Cook, H., Kuhn, M., Wyder, S., Simonovic, M., Santos, A., Doncheva, N. T., Roth, A., Bork, P., Jensen, L. J., & von Mering, C. (2017). The STRING database in 2017: Quality-controlled protein–protein association networks, made broadly accessible. Nucleic Acids Research, 45(D1), D362–D368. doi:10.1093/nar/gkw937
  • Vij, S., & Tyagi, A. K. (2006). Genome-wide analysis of the stress associated protein (SAP) gene family containing A20/AN1 zinc-finger (s) in rice and their phylogenetic relationship with Arabidopsis. Molecular Genetics and Genomics, 276(6), 565–575. doi:10.1007/s00438-006-0165-1
  • Wang, H., Wang, H., Shao, H., & Tang, X. (2016). Recent advances in utilizing transcription factors to improve plant abiotic stress tolerance by transgenic technology. Frontiers in Plant Science, 7, 1–13. doi:10.3389/fpls.2016.00067
  • Yamaguchi-Shinozaki, K., & Shinozaki, K. (2005). Organization of cis-acting regulatory elements in osmotic-and cold-stress-responsive promoters. Trends in Plant Science, 10(2), 88–94. doi:10.1016/j.tplants.2004.12.012
  • Zhang, J., Li, Y., Jia, H. X., Li, J. B., Huang, J., Lu, M. Z., & Hu, J. J. (2015). The heat shock factor gene family in Salix suchowensis: A genome-wide survey and expression profiling during development and abiotic stresses. Frontiers in Plant Science, 6, 1–14. doi:10.3389/fpls.2015.00748
  • Zheng, Q., & Wang, X. J. (2008). GOEAST: a web-based software toolkit for Gene Ontology enrichment analysis. Nucleic Acids Research, 36(suppl_2), W358–W363. doi:10.1093/nar/gkn276

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.