351
Views
14
CrossRef citations to date
0
Altmetric
Research Articles

Synthesis of niobium substituted cobalt-nickel nano-ferrite (Co0.5Ni0.5NbxFe2-xO4 (x ≤ 0.1) by hydrothermal approach show strong anti-colon cancer activities

ORCID Icon, , , &
Pages 2257-2265 | Received 19 Feb 2020, Accepted 18 Mar 2020, Published online: 07 Apr 2020

References

  • Abbasi, N., Gamasaee, H., Muhammad, A., Tadayon, E., Ale-Ebrahim, M., Mirpour, M., Sharifi, M., Salihi, A., Sabir Shekha, M., Alasady, A. A. B., Mohammad Aziz, F., Akhtari, K., Hasan, A., & Falahati, M. (2019). The effects of nickel oxide nanoparticles on structural changes, heme degradation, aggregation of hemoglobin and expression of apoptotic genes in lymphocytes. Journal of Biomolecular Structure and Dynamics, 12, 1–11. doi:10.1080/07391102.2019.1662850
  • Akhtar, S., Khan, F. A., & Buhaimed, A. (2019). Functionalized magnetic nanoparticles attenuate cancer cells proliferation: Transmission electron microscopy analysis. Microscopy Research and Technique, 82(7), 983–992. doi:10.1002/jemt.23245
  • Akhtar, S., Rehman, S., Almessiere, M. A., Khan, F. A., Slimani, Y., & Baykal, A. (2019). Synthesis of Mn(0.5)Zn(0.5)Sm(x)Eu(x)Fe(1.8-2x)O(4) nanoparticles via the hydrothermal approach induced anti-cancer and anti-bacterial activities. Nanomaterials, 9(11), 1635. doi:10.3390/nano9111635
  • Al-Jamal, K. T., Bai, J., Wang, J. T.-W., Protti, A., Southern, P., Bogart, L., Heidari, H., Li, X., Cakebread, A., Asker, D., Al-Jamal, W. T., Shah, A., Bals, S., Sosabowski, J., & Pankhurst, Q. A. (2016). Magnetic drug targeting: Preclinical in vivo studies, mathematical modeling, and extrapolation to humans. Nano Letters, 16(9), 5652–5660. doi:10.1021/acs.nanolett.6b02261
  • Almessiere, M. A., Slimani, Y., Güngüneş, H., Baykal, A., Trukhanov, S. V., & Trukhanov, A. V. (2018). Manganese/yttrium codoped strontium nanohexaferrites: Evaluation of magnetic susceptibility and Mossbauer spectra. Nanomaterials, 9(1), 24. doi:10.3390/nano9010024
  • Almessiere, A. M., Slimani, Y., Sertkol, M., Nawaz, M., Sadaqat, A., Baykal, A., Ercan, I., & Ozcelik, B. (2019). Effect of Nb3+ substitution on structural, magnetic and optical properties of Co0.5Ni0.5NbxFe2-xO4 nanoparticles. Nanomaterials, 9(3), 430. doi:10.3390/nano9030430
  • Almessiere, M. A., Trukhanov, A. V., Slimani, Y., You, K. Y., Trukhanov, S. V., Trukhanova, E. L., Esa, F., Sadaqat, A., Chaudhary, K., Zdorovets, M., & Baykal, A. (2019). Correlation between composition and electrodynamics properties in nanocomposites based on hard/soft ferrimagnetics with strong exchange coupling. Nanomaterials, 9(2), 202. doi:10.3390/nano9020202
  • Amiri, S., & Shokrollahi, H. (2013). The role of cobalt ferrite magnetic nanoparticles in medical science. Materials Science and Engineering: C, 33(1), 1–8. doi:10.1016/j.msec.2012.09.003
  • Anwar, A., Numan, A., Siddiqui, R., Khalid, M., & Khan, N. A. (2019). Cobalt nanoparticles as novel nanotherapeutics against Acanthamoeba castellanii. Parasitology Vectors, 12(1), 280.
  • Arya, M., Mishra, N., Singh, P., Tripathi, C. B., Parashar, P., Singh, M., Gupta, K. P., & Saraf, S. A. (2019). In vitro and in silico molecular interaction of multiphase nanoparticles containing inositol hexaphosphate and jacalin: Therapeutic potential against colon cancer cells (HCT-15). Journal of Cellular Physiology, 234(9), 15527–15536. doi:10.1002/jcp.28200
  • Baharara, J., Ramezani, T., Divsalar, A., Mousavi, M., & Seyedarabi, A. (2016). Induction of apoptosis by green synthesized gold nanoparticles through activation of caspase-3 and 9 in human cervical cancer cells. Avicenna Journal of Medical Biotechnology, 8(2), 75–83.
  • Chanphai, P., Thomas, T. J., & Tajmir-Riahi, H. A. (2020). Application and biomolecular study of functionalized folic acid-dendrimer nanoparticles in drug delivery. Journal of Biomolecular Structure and Dynamics, 27, 1–8.
  • Chiang, C.-S., Lin, Y.-J., Lee, R., Lai, Y.-H., Cheng, H.-W., Hsieh, C.-H., Shyu, W.-C., & Chen, S.-Y. (2018). Combination of fucoidan-based magnetic nanoparticles and immunomodulators enhances tumour-localized immunotherapy. Nature Nanotechnology, 13(8), 746–754. doi:10.1038/s41565-018-0146-7
  • Dadashpour, M., Firouzi-Amandi, A., Pourhassan-Moghaddam, M., Maleki, M. J., Soozangar, N., Jeddi, F., Nouri, M., Zarghami, N., & Pilehvar-Soltanahmadi, Y. (2018). Biomimetic synthesis of silver nanoparticles using Matricaria chamomilla extract and their potential anticancer activity against human lung cancer cells. Materials Science and Engineering: C, 92, 902–912. doi:10.1016/j.msec.2018.07.053
  • Demirci Dönmez, Ç. E., Manna, P. K., Nickel, R., Aktürk, S., & van Lierop, J. (2019). Comparative heating efficiency of cobalt-, manganese-, and nickel-ferrite nanoparticles for a hyperthermia agent in biomedicine. ACS Applied Materials & Interfaces, 11(7), 6858–6866. doi:10.1021/acsami.8b22600
  • Esmaili, M., Dezhampanah, H., & Hadavi, M. (2020). Surface modification of super paramagnetic iron oxide nanoparticles via milk casein for potential use in biomedical areas. Journal of Biomolecular Structure and Dynamics, 12, 1–11. doi: 10.1080/07391102.2020.1722751
  • Jabir, M. S., Taha, A. A., Sahib, U. I., Taqi, Z. J., Al-Shammari, A. M., & Salman, A. S. (2019). Novel of nano delivery system for Linalool loaded on gold nanoparticles conjugated with CALNN peptide for application in drug uptake and induction of cell death on breast cancer cell line. Materials Science and Engineering: C, 94, 949–964. doi:10.1016/j.msec.2018.10.014
  • Khan, F. A., Akhtar, S., Almofty, S. A., Almohazey, D., & Alomari, M. (2018). FMSP-nanoparticles induced cell death on human breast adenocarcinoma cell line (MCF-7 Cells): Morphometric analysis. Biomolecules, 8(2), 32. doi:10.3390/biom8020032
  • Khan, F. A., Akhtar, S., Almohazey, D., Alomari, M., Almofty, S. A., & Eliassari, A. (2018). Fluorescent magnetic submicronic polymer (FMSP) nanoparticles induce cell death in human colorectal carcinoma cells. Artificial Cells Nanomedicine Biotechnology, 46(sup3), S247–S253. doi:10.1080/21691401.2018.1491476
  • Klein, S., Kızaloğlu, M., Portilla, L., Park, H., Rejek, T., Hümmer, J., Meyer, K., Hock, R., Distel, L. V. R., Halik, M., & Kryschi, C. (2018). Enhanced in vitro biocompatibility and water dispersibility of magnetite and cobalt ferrite nanoparticles employed as ROS formation enhancer in radiation cancer therapy. Small, 14(21), e1704111. doi:10.1002/smll.201704111
  • Li, C., Wang, Y., Zhang, H., Li, M., Zhu, Z., & Xue, Y. (2019). An investigation on the cytotoxicity and caspase-mediated apoptotic effect of biologically synthesized gold nanoparticles using Cardiospermum halicacabum on AGS gastric carcinoma cells. International Journal of Nanomedicine, 14, 951–962. doi:10.2147/IJN.S193064
  • Lima-Tenorio, M. K., Pineda, E. A. G., Ahmad, N. M., Fessi, H., & Elaissari, A. (2015). Magnetic nanoparticles: In vivo cancer diagnosis and therapy. International Journal of Pharmaceutics, 493(1-2), 313–327. doi:10.1016/j.ijpharm.2015.07.059
  • Lin-Wei, W., Ai-Ping, Q., Wen-Lou, L., Jia-Mei, C., Yuan, J-P., Wu, H., Li, Y., & Liu, J. (2016). Quantum dots-based double imaging combined with organic dye imaging to establish an automatic computerized method for cancer Ki67 measurement. Scientific Reports, 6(1), 20564. doi:10.1038/srep20564
  • Moskvin, M., Babič, M., Reis, S., Cruz, M. M., Ferreira, L. P., Carvalho, M. D., Lima, S. A. C., & Horák, D. (2018). Biological evaluation of surface-modified magnetic nanoparticles as a platform for colon cancer cell theranostics. Colloids and Surfaces B: Biointerfaces, 161, 35–41. doi:10.1016/j.colsurfb.2017.10.034
  • Mytych, J., Lewinska, A., Zebrowski, J., & Wnuk, M. (2015). Gold nanoparticles promote oxidant-mediated activation of NF-κB and 53BP1 recruitment-based adaptive response in human astrocytes. Biomed Research International, 2015, 1–9. doi:10.1155/2015/304575
  • Nagesetti, A., Rodzinski, A., Stimphil, E., Stewart, T., Khanal, C., Wang, P., Guduru, R., Liang, P., Agoulnik, I., Horstmyer, J., & Khizroev, S. (2017). Multiferroic coreshell magnetoelectric nanoparticles as NMR sensitive nanoprobes for cancer cell detection. Scientific Reports, 7(1), 1610. doi:10.1038/s41598-017-01647-x
  • Nosrati, H., Rashidi, N., Danafar, H., & Manjili, H. K. (2018). Anticancer activity of tamoxifen loaded tyrosine decorated biocompatible Fe 3 O 4 magnetic nanoparticles against breast cancer cell lines. Journal of Inorganic and Organometallic Polymers and Materials, 28(3), 1178–1186. doi:10.1007/s10904-017-0758-7
  • Oliveira, A. B., de Moraes, F. R., Candido, N. M., Sampaio, I., Paula, A. S., de Vasconcellos, A., Silva, T. C., Miller, A. H., Rahal, P., Nery, J. G., & Calmon, M. F. (2016). Metabolic effects of cobalt ferrite nanoparticles on cervical carcinoma cells and nontumorigenic keratinocytes. Journal of Proteome Research, 15(12), 4337–4348. doi:10.1021/acs.jproteome.6b00411
  • Park, B. J., Choi, K. H., Nam, K. C., Ali, A., Min, J. E., Son, H., Uhm, H. S., Kim, H. J., Jung, J. S., & Choi, E. H. (2015). Photodynamic anticancer activities of multifunctional cobalt ferrite nanoparticles in various cancer cells. Journal of Biomedical Nanotechnology, 11(2), 226–235. doi:10.1166/jbn.2015.2031
  • Polo, E., Nitka, T. T., Neubert, E., Erpenbeck, L., Vuković, L., Kruss, S. (2018). Control of Integrin Affinity by Confining RGD Peptides on Fluorescent Carbon Nanotubes. ACS Appl Mater Interfaces 10(21), 17693–17703.
  • Revia, R. A., & Zhang, M. (2016). Magnetite nanoparticles for cancer diagnosis, treatment, and treatment monitoring: Recent advances. Materials Today, 19(3), 157–168. doi:10.1016/j.mattod.2015.08.022
  • Shahabadi, N., Hadidi, S., & Shiri, F. (2020). New water-soluble Fe3O4@SiO2 magnetic nanoparticles functionalized with levetiracetam drug for adsorption of essential biomolecules by case studies of DNA and HSA. Journal of Biomolecular Structure and Dynamics, 38(1), 283–294. doi:10.1080/07391102.2019.1569557
  • Sharifi, M., Mahdi Rezayat, S., Akhtari, K., Hasan, A., & Falahati, M. (2019). Fabrication and evaluation of anti-cancer efficacy of lactoferrin-coated maghemite and magnetite nanoparticles. Journal of Biomolecular Structure and Dynamics, 8, 1–10. doi:10.1080/07391102.2019.1650114
  • Shiva, I., Zhohreh, S., Seyed Mohammad, A., & Shahriar, M. (2015). Induction of growth arrest in colorectal cancer cells by cold plasma and gold nanoparticles. Archives of Medical Science, 11(6), 1286–1295.
  • Subramanian, M., Pearce, G., Guldu, O. K., Tekin, V., Miaskowski, A., Aras, O., & Unak, P. (2016). A pilot study into the use of FDG-mNP as an alternative approach in neuroblastoma cell hyperthermia. IEEE Transactions on Nanobioscience, 15(6), 517–525. doi:10.1109/TNB.2016.2584543
  • Tietze, R., Zaloga, J., Unterweger, H., Lyer, S., Friedrich, R. P., Janko, C., Pöttler, M., Dürr, S., & Alexiou, C. (2015). Magnetic nanoparticle-based drug delivery for cancer therapy. Biochemical and Biophysical Research Communications, 468(3), 463–470. doi:10.1016/j.bbrc.2015.08.022
  • Wu, T., Duan, X., Hu, C., Wu, C., Chen, X., Huang, J., Liu, J., & Cui, S. (2019). Synthesis and characterization of gold nanoparticles from Abies spectabilis extract and its anticancer activity on bladder cancer T24 cells. Artificial Cells Nanomedicine Biotechnology, 47(1), 512–523. doi:10.1080/21691401.2018.1560305
  • Zablotskii, V., Polyakova, T., Lunov, O., & Dejneka, A. (2016). How a high-gradient magnetic field could affect cell life. Scientific Reports, 6(1), 37407. doi:10.1038/srep37407
  • Zasońska, B. A., Hlídková, H., Petrovský, E., Myronovskij, S., Nehrych, T., Negrych, N., Shorobura, M., Antonyuk, V., Stoika, R., Kit, Y., Horák, D. (2018 ).Monodisperse magnetic poly(glycidyl methacrylate) microspheres for isolation of autoantibodies with affinity for the 46 kDa form of unconventional Myo1C present in autoimmune patients. Mikrochim Acta, 185(5), 262.
  • Zhang, T., Cao, C., Tang, X., Cai, Y., Yang, C., & Pan, Y. (2017). Enhanced peroxidase activity and tumour tissue visualization by cobalt-doped magnetoferritin nanoparticles. Nanotechnology, 28(4), 045704. doi:10.1088/1361-6528/28/4/045704
  • Zielinska, E., Zauszkiewicz-Pawlak, A., Wojcik, M., & Inkielewicz-Stepniak, I. (2018). Silver nanoparticles of different sizes induce a mixed type of programmed cell death in human pancreatic ductal adenocarcinoma. Oncotarget, 9(4), 4675. doi:10.18632/oncotarget.22563

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.