362
Views
10
CrossRef citations to date
0
Altmetric
Research Articles

Nanoporous iron oxide nanoparticle: hydrothermal fabrication, human serum albumin interaction and potential antibacterial effects

, , ORCID Icon, , &
Pages 2595-2606 | Received 28 Feb 2020, Accepted 30 Mar 2020, Published online: 15 Apr 2020

References

  • Anbouhi, T. S., Esfidvajani, E. M., Nemati, F., Haghighat, S., Sari, S., Attar, F., Pakaghideh, A., Sohrabi, M. J., Mousavi, S. E., & Falahati, M. (2018). Albumin binding, anticancer and antibacterial properties of synthesized zero valent iron nanoparticles. International Journal of Nanomedicine, 14, 243–256. 10.2147/IJN.S188497
  • Anjana, P., Bindhu, M., Umadevi, M., & Rakhi, R. (2019). Antibacterial and electrochemical activities of silver, gold, and palladium nanoparticles dispersed amorphous carbon composites. Applied Surface Science, 479, 96–104.
  • Anwar, A., Perveen, S., Ahmed, S., Siddiqui, R., Shah, M. R., & Khan, N. A. (2019). Silver nanoparticle conjugation with thiopyridine exhibited potent antibacterial activity against Escherichia coli and further enhanced by copper capping. Jundishapur Journal of Microbiology, 12(3), e74455. 10.5812/jjm.74455
  • Arias, L. S., Pessan, J. P., Vieira, A. P. M., Lima, T. M. T. d., Delbem, A. C. B., & Monteiro, D. R. (2018). Iron oxide nanoparticles for biomedical applications: A perspective on synthesis, drugs, antimicrobial activity, and toxicity. Antibiotics, 7(2), 46. 10.3390/antibiotics7020046
  • Behzadi, E., Sarsharzadeh, R., Nouri, M., Attar, F., Akhtari, K., Shahpasand, K., & Falahati, M. (2018). Albumin binding and anticancer effect of magnesium oxide nanoparticles. International Journal of Nanomedicine, 14, 257–270. 10.2147/IJN.S186428
  • Benyettou, F., Ocadiz Flores, J. A., Ravaux, F., Rezgui, R., Jouiad, M., Nehme, S. I., Parsapur, R. K., Olsen, J. C., Selvam, P., & Trabolsi, A. (2016). Mesoporous γ‐ iron oxide nanoparticles for magnetically triggered release of doxorubicin and hyperthermia treatment. Chemistry - A European Journal, 22(47), 17020–17028. 10.1002/chem.201602956
  • Breisch, M., Grasmik, V., Loza, K., Pappert, K., Rostek, A., Ziegler, N., Ludwig, A., Heggen, M., Epple, M., Tiller, J. C., Schildhauer, T. A., Köller, M., & Sengstock, C. (2019). Bimetallic silver–platinum nanoparticles with combined osteo-promotive and antimicrobial activity. Nanotechnology, 30(30), 305101. 10.1088/1361-6528/ab172b
  • Chen, M., Xiong, F., Ma, L., Yao, H., Wang, Q., Wen, L., Wang, Q., Gu, N., & Chen, S. (2016). Inhibitory effect of magnetic Fe(3)O(4) nanoparticles coloaded with homoharringtonine on human leukemia cells in vivo and in vitro. International Journal of Nanomedicine, 11, 4413–4422. 10.2147/IJN.S105543
  • Darabpour, E., Doroodmand, M. M., Halabian, R., & Imani Fooladi, A. A. (2019). Sulfur-functionalized fullerene nanoparticle as an inhibitor and eliminator agent on Pseudomonas aeruginosa biofilm and expression of toxA gene. Microbial Drug Resistance, 25(4), 594–602. 10.1089/mdr.2018.0008
  • Derakhshankhah, H., Hosseini, A., Taghavi, F., Jafari, S., Lotfabadi, A., Ejtehadi, M. R., Shahbazi, S., Fattahi, A., Ghasemi, A., Barzegari, E., Evini, M., Saboury, A. A., Shahri, S. M. K., Ghaemi, B., Ng, E.-P., Awala, H., Omrani, F., Nabipour, I., Raoufi, M., … Mahmoudi, M. (2019). Molecular interaction of fibrinogen with zeolite nanoparticles. Scientific Reports, 9(1), 1–14. 10.1038/s41598-018-37621-4
  • Esfandfar, P., Falahati, M., & Saboury, A. (2016). Spectroscopic studies of interaction between CuO nanoparticles and bovine serum albumin. Journal of Biomolecular Structure and Dynamics, 34(9), 1962–1968. 10.1080/07391102.2015.1096213
  • Farrokhi, Z., Ayati, A., Kanvisi, M., & Sillanpää, M. (2019). Recent advance in antibacterial activity of nanoparticles contained polyurethane. Journal of Applied Polymer Science, 136(4), 46997. 10.1002/app.46997
  • Feng, Q., Liu, Y., Huang, J., Chen, K., Huang, J., & Xiao, K. (2018). Uptake, distribution, clearance, and toxicity of iron oxide nanoparticles with different sizes and coatings. Scientific Reports, 8(1), 2082. 10.1038/s41598-018-19628-z
  • Ghosh, R., Swart, O., Westgate, S., Miller, B., & Yates, M. (2019). Two-stage electrochemical synthesis of copper nanoparticles on hydroxyapatite coatings for antibacterial implants. Meeting Abstracts, The Electrochemical Society.
  • Groiss, S., Selvaraj, R., Varadavenkatesan, T., & Vinayagam, R. (2017). Structural characterization, antibacterial and catalytic effect of iron oxide nanoparticles synthesised using the leaf extract of Cynometra ramiflora. Journal of Molecular Structure, 1128, 572–578. 10.1016/j.molstruc.2016.09.031
  • Hao, C., Xu, G., Feng, Y., Lu, L., Sun, W., & Sun, R. (2017). Fluorescence quenching study on the interaction of ferroferric oxide nanoparticles with bovine serum albumin. Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy, 184, 191–197. 10.1016/j.saa.2017.05.004
  • Hoseinzadeh, E., Makhdoumi, P., Taha, P., Hossini, H., Stelling, J., Amjad Kamal, M., & Md. Ashraf, G. (2017). A review on nano-antimicrobials: Metal nanoparticles, methods and mechanisms. Current Drug Metabolism, 18(2), 120–128. 10.2174/1389200217666161201111146
  • Kanwar, J. R., Kamalapuram, S. K., Krishnakumar, S., & Kanwar, R. K. (2016). Multimodal iron oxide (Fe3O4)-saturated lactoferrin nanocapsules as nanotheranostics for real-time imaging and breast cancer therapy of claudin-low, triple-negative (ER-/PR-/HER2-). Nanomedicine, 11(3), 249–268.
  • Kassem, A., Ayoub, G. M., & Malaeb, L. (2019). Antibacterial activity of chitosan nano-composites and carbon nanotubes: A review. Science of the Total Environment, 668, 566–576. 10.1016/j.scitotenv.2019.02.446
  • Khoshgozaran Roudbaneh, S. Z., Kahbasi, S., Sohrabi, M. J., Hasan, A., Salihi, A., Mirzaie, A., Niyazmand, A., Qadir Nanakali, N. M., Shekha, M. S., Aziz, F. M., Vaghar-Lahijani, G., Keshtali, A. B., Ehsani, E., Rasti, B., & Falahati, M. (2019). Albumin binding, antioxidant and antibacterial effects of cerium oxide nanoparticles. Journal of Molecular Liquids, 296, 111839. 10.1016/j.molliq.2019.111839
  • Ostroverkhov, P. V., Semkina, A. S., Naumenko, V. A., Plotnikova, E. A., Melnikov, P. A., Abakumova, T. O., Yakubovskaya, R. I., Mironov, A. F., Vodopyanov, S. S., Abakumov, A. M., Majouga, A. G., Grin, M. A., Chekhonin, V. P., & Abakumov, M. A. (2019). Synthesis and characterization of Bacteriochlorin loaded magnetic nanoparticles (MNP) for personalized MRI guided photosensitizers delivery to tumor. Journal of Colloid and Interface Science, 537, 132–141. 10.1016/j.jcis.2018.10.087
  • Parham, S., Wicaksono, D. H., Bagherbaigi, S., Lee, S. L., & Nur, H. (2016). Antimicrobial treatment of different metal oxide nanoparticles: A critical review. Journal of the Chinese Chemical Society, 63(4), 385–393. 10.1002/jccs.201500446
  • Phul, R., Shrivastava, V., Farooq, U., Sardar, M., Kalam, A., Al-Sehemi, A. G., & Ahmad, T. (2019). One pot synthesis and surface modification of mesoporous iron oxide nanoparticles. Nano-Structures & Nano-Objects, 19, 100343. 10.1016/j.nanoso.2019.100343
  • Riaz, S., Ashraf, M., Hussain, T., & Hussain, M. T. (2019). Modification of silica nanoparticles to develop highly durable superhydrophobic and antibacterial cotton fabrics. Cellulose, 26(8), 5159–5175. 10.1007/s10570-019-02440-x
  • Saqib, S., Munis, M. F. H., Zaman, W., Ullah, F., Shah, S. N., Ayaz, A., Farooq, M., & Bahadur, S. (2019). Synthesis, characterization and use of iron oxide nano particles for antibacterial activity. Microscopy Research and Technique, 82(4), 415–420. 10.1002/jemt.23182
  • Sharifi, M., Hosseinali, S. H., Saboury, A. A., Szegezdi, E., & Falahati, M. (2019). Involvement of planned cell death of necroptosis in cancer treatment by nanomaterials: Recent advances and future perspectives. Journal of Controlled Release, 299, 121–137. 10.1016/j.jconrel.2019.02.007
  • Shen, L., Li, B., & Qiao, Y. (2018). Fe3O4 nanoparticles in targeted drug/gene delivery systems. Materials, 11(2), 324. 10.3390/ma11020324
  • Sivamaruthi, B. S., Ramkumar, V. S., Archunan, G., Chaiyasut, C., & Suganthy, N. (2019). Biogenic synthesis of silver palladium bimetallic nanoparticles from fruit extract of Terminalia chebula–In vitro evaluation of anticancer and antimicrobial activity. Journal of Drug Delivery Science and Technology, 51, 139–151. 10.1016/j.jddst.2019.02.024
  • Slavin, Y. N., Asnis, J., Häfeli, U. O., & Bach, H. (2017). Metal nanoparticles: Understanding the mechanisms behind antibacterial activity. Journal of Nanobiotechnology, 15(1), 65. 10.1186/s12951-017-0308-z
  • Su, Y.-L., Fang, J.-H., Liao, C.-Y., Lin, C.-T., Li, Y.-T., & Hu, S.-H. (2015). Targeted mesoporous iron oxide nanoparticles-encapsulated perfluorohexane and a hydrophobic drug for deep tumor penetration and therapy. Theranostics, 5(11), 1233–1248. 10.7150/thno.12843
  • Subbiahdoss, G., Sharifi, S., Grijpma, D. W., Laurent, S., van der Mei, H. C., Mahmoudi, M., & Busscher, H. J. (2012). Magnetic targeting of surface-modified superparamagnetic iron oxide nanoparticles yields antibacterial efficacy against biofilms of gentamicin-resistant staphylococci. Acta Biomaterialia, 8(6), 2047–2055. 10.1016/j.actbio.2012.03.002
  • Torres, L. M. F. C., Almeida, M. T., Santos, T. L., Marinho, L. E. S., de Mesquita, J. P., da Silva, L. M., dos Santos, W. T. P., Martins, H. R., Kato, K. C., Alves, E. S. F., Liao, L. M., de Magalhães, M. T. Q., de Mendonça, F. G., Pereira, F. V., Resende, J. M., Bemquerer, M. P., Rodrigues, M. A., & Verly, R. M. (2019). Antimicrobial alumina nanobiostructures of disulfide-and triazole-linked peptides: Synthesis, characterization, membrane interactions and biological activity. Colloids and Surfaces B: Biointerfaces, 177, 94–104. 10.1016/j.colsurfb.2019.01.052
  • Wang, G., Lu, Y., Hou, H., & Liu, Y. (2017). Probing the binding behavior and kinetics of silver nanoparticles with bovine serum albumin. RSC Advances, 7(15), 9393–9401. 10.1039/C6RA26089F
  • Xia, M.-Y., Xie, Y., Yu, C.-H., Chen, G.-Y., Li, Y.-H., Zhang, T., & Peng, Q. (2019). Graphene-based nanomaterials: The promising active agents for antibiotics-independent antibacterial applications. Journal of Controlled Release, 307, 16–31. 10.1016/j.jconrel.2019.06.011
  • Xu, Z.-Q., Yang, Q.-Q., Lan, J.-Y., Zhang, J.-Q., Peng, W., Jin, J.-C., Jiang, F.-L., & Liu, Y. (2016). Interactions between carbon nanodots with human serum albumin and γ-globulins: The effects on the transportation function. Journal of Hazardous Materials, 301, 242–249. 10.1016/j.jhazmat.2015.08.062
  • Xue, W., Liu, X.-L., Ma, H., Xie, W., Huang, S., Wen, H., Jing, G., Zhao, L., Liang, X.-J., & Fan, H. M. (2018). AMF responsive DOX-loaded magnetic microspheres: Transmembrane drug release mechanism and multimodality postsurgical treatment of breast cancer. Journal of Materials Chemistry B, 6(15), 2289–2303. 10.1039/C7TB03206D

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.