417
Views
1
CrossRef citations to date
0
Altmetric
Research Articles

Structural disorder originates beyond narrow stoichiometric margins of amino acids in naturally occurring folded proteins

, , , , &
Pages 2364-2375 | Received 20 Sep 2019, Accepted 20 Mar 2020, Published online: 20 Apr 2020

References

  • Agutter, P. S. (2011). Stoichiometry-driven protein folding: A comment. Journal of Biomolecular Structure and Dynamics, 28(4), 643–644. doi:10.1080/073911011010524974
  • Bansal, S., & Mittal, A. (2015). A statistical anomaly indicates symbiotic origins of eukaryotic membranes. Molecular Biology of the Cell, 26(7), 1238–1248. doi:10.1091/mbc.E14-06-1078
  • Berlow, R. B., Dyson, H. J., & Wright, P. E. (2018). Expanding the paradigm: Intrinsically disordered proteins and allosteric regulation. Journal of Molecular Biology, 430(16), 2309–2320. doi:10.1016/j.jmb.2018.04.003
  • Berman, H., Henrick, K., Nakamura, H., & Markley, J. L. (2007). The worldwide Protein Data Bank (wwPDB): ensuring a single, uniform archive of PDB data. Nucleic Acids Research, 35(Database issue), D301–303. doi:10.1093/nar/gkl971
  • Berman, H. M., Westbrook, J., Feng, Z., Gilliland, G., Bhat, T. N., Weissig, H., Shindyalov, I. N., & Bourne, P. E. (2000). The protein data bank. Nucleic Acids Research, 28(1), 235–242.
  • Caetano-Anollés, G., Kim, K. M., & Caetano-Anollés, D. (2012). The phylogenomic roots of modern biochemistry: Origins of proteins, cofactors and protein biosynthesis. Journal of Molecular Evolution, 74(1-2), 1–34. doi:10.1007/s00239-011-9480-1
  • Caetano-Anollés D. (2013). Structural phylogenomics retrodicts the origin of the genetic code and uncovers the evolutionary impact of protein flexibility. PLoS One. 8, e72225. doi:10.1371/journal.pone.0072225.
  • Chargaff, E. (1950). Chemical specificity of nucleic acids and mechanism of their enzymatic degradation. Experientia, 6(6), 201–209. doi:10.1007/BF02173653
  • Chouard, T. (2011). Breaking the protein rules. Nature, 471(7337), 151–153. doi:10.1038/471151a
  • Dill, K. A., Ghosh, K., & Schmit, J. D. (2011). Physical limits of cells and proteomes. Proceedings of the National Academy of Sciences of the United States of America., 108(44), 17876–17882. doi:10.1073/pnas.1114477108
  • Engelman, D. M., Steitz, T. A., and Goldman, A. (1986). Identifying nonpolar transbilayer helices in amino acid sequences ofmembrane proteins. Annu Rev Biophys Biophys Chem, 15, 321–353.
  • Gaur, R. K. (2014). Amino acid frequency distribution among eukaryotic proteins. IIOAB Journal, 5(2), 6–11.
  • Ghosh, K., de Graff, A. M. R., Sawle, L., & Dill, K. A. (2016). Role of proteome physical chemistry in cell behavior. The Journal of Physical Chemistry B, 120(36), 9549–9563. doi:10.1021/acs.jpcb.6b04886
  • Ghosh, K., & Dill, K. A. (2010). Cellular proteomes have broad distributions of protein stability. Biophysical Journal., 99(12), 3996–4002. doi:10.1016/j.bpj.2010.10.036
  • Komar, A. A. (2007). SNPs, Silent but not invisible. Science, 315(5811), 466–467. doi:10.1126/science.1138239
  • Krick, T., Verstraete, N., Alonso, L. G., Shub, D. A., Ferreiro, D. U., Shub, M., & Sánchez, I. E. (2014). Amino Acid metabolism conflicts with protein diversity. Mol Biol Evol. 31, 2905–12. doi:10.1093/molbev/msu228.
  • Li, X. H., & Babu, M. M. (2018). Human diseases from gain-of-function mutations in disordered protein regions. Cell, 175(1), 40–42. doi:10.1016/j.cell.2018.08.059
  • Lightfield, J., Fram, N. R., & Ely, B. (2011). Across bacterial phyla, distantly-related genomes with similar genomic GC content have similar patterns of amino acid usage. PLoS One., 6(3), e17677. doi:10.1371/journal.pone.0017677
  • Meyer, K., Kirchner, M., Uyar, B., Cheng, J. Y., Russo, G., Hernandez-Miranda, L. R., Szymborska, A., Zauber, H., Rudolph, I. M., Willnow, T. E., Akalin, A., Haucke, V., Gerhardt, H., Birchmeier, C., Kühn, R., Krauss, M., Diecke, S., Pascual, J. M., & Selbach, M. (2018). Mutations in Disordered Regions Can Cause Disease by Creating Dileucine Motifs. Cell, 175(1), 239–253.e17. doi:10.1016/j.cell.2018.08.019
  • Mezei, M. (2011). Discriminatory Power of Stoichiometry-Driven Protein Folding?. Journal of Biomolecular Structure and Dynamics., 28(4), 625–626. doi:10.1080/073911011010524966
  • Mezei, M. (2019). On predicting foldability of a protein from its sequence, Protein, 88 (2), 355–365. doi:10.1002/prot.25811
  • Mittal, A., Changani, A. M., & Taparia, S. (2019). What limits the primary sequence space of natural proteins?. Journal of Biomolecular Structure and Dynamics., 1–5. doi:10.1080/07391102.2019.1682051
  • Mittal, A., Changani, A. M., & Taparia, S. (2020). Unique and exclusive peptide signatures directly identify intrinsically disordered proteins from sequences without structural information. Journal of Biomolecular Structure and Dynamics. 10.1080/07391102.2020.1756410
  • Mittal, A., & Jayaram, B. (2011a). Backbones of Folded Proteins Reveal Novel Invariant Amino Acid Neighborhoods. Journal of Biomolecular Structure and Dynamics, 28(4), 443–454. doi:10.1080/073911011010524954
  • Mittal, A., & Jayaram, B. (2011b). The Newest View on Protein Folding: Stoichiometric and Spatial Unity in Structural and Functional Diversity. Journal of Biomolecular Structure and Dynamics., 28(4), 669–674. doi:10.1080/073911011010524984
  • Mittal, A., & Jayaram, B. (2012). A possible molecular metric for biological evolvability. Journal of Biosciences, 37(3), 573–577. doi:10.1007/s12038-012-9210-x
  • Mittal, A., Jayaram, B., Shenoy, S. R., & Bawa, T. S. (2010). A stoichiometry driven universal spatial organization of backbones of folded proteins: Are there Chargaff’s rules for protein folding?. Journal of Biomolecular Structure and Dynamics., 28(2), 133–142. doi:10.1080/07391102.2010.10507349
  • O. V., Galzitskaya, O. V., Lobanov, M. Y., & Finkelstein, A. V. (2011). Cunning simplicity of a stoichiometry driven protein folding thesis. Journal of Biomolecular Structure and Dynamics., 28(4), 595–598. doi:10.1080/073911011010524958
  • Piovesan, D., Tabaro, F., Mičetić, I., Necci, M., Quaglia, F., Oldfield, C. J., Aspromonte, M. C., Davey, N. E., Davidović, R., Dosztányi, Z., Elofsson, A., Gasparini, A., Hatos, A., Kajava, A. V., Kalmar, L., Leonardi, E., Lazar, T., Macedo-Ribeiro, S., Macossay-Castillo, M., … Tosatto, S. C. (2017). DisProt 7.0: A major update of the database of disordered proteins. Nucleic Acids Research, 45(D1), D219–D227.
  • Salvi, N., Abyzov, A., & Blackledge, M. (2019). Solvent-dependent segmental dynamics in intrinsically disordered proteins. Science Advances, 5(6), eaax2348. doi:10.1126/sciadv.aax2348
  • Santoni, D., Felici, G., & Vergni, D. (2016). Natural vs. random protein sequences: Discovering combinatorics properties on amino acid words. Journal of Theoretical Biology., 391, 13–20. doi:10.1016/j.jtbi.2015.11.022
  • Sarma, R. H. (2011). A conversation on protein folding. Journal of Biomolecular Structure and Dynamics, 28(4), 587–588. doi:10.1080/073911011010524955
  • Schirò, G., Caronna, C., Natali, F., Koza, M. M., & Cupane, A. (2011). The “protein dynamical transition” Does not require the protein polypeptide chain. The Journal of Physical Chemistry Letters, 2(18), 2275–2279. doi:10.1021/jz200797g
  • Sharma, M., Hasija, V., Naresh, M., & Mittal, A. (2008). Functional control by codon bias in magnetic bacteria. Journal of Biomedical Nanotechnology., 4, 44–51.
  • Song, Y., Song, Y., & Chen, X. (2011). The yeast prion case: Could there be a uniform concept underlying complex protein folding?. Journal of Biomolecular Structure & Dynamics, 28(4), 663–666. doi:10.1080/073911011010524982
  • Sun, F.-J., & Caetano-Anollés, G. (2008). Evolutionary patterns in the sequence and structure of transfer RNA: A window into early translation and the genetic code. PLoS One. , 3(7), e2799. doi:10.1371/journal.pone.0002799
  • The UniProt Consortium. (2019). UniProt: A worldwide hub of protein knowledge. Nucleic Acids Research. 47(D1), D506–515.
  • Tompa, P., Davey, N. E., Gibson, T. J., & Babu, M. M. (2014). A million peptide motifs for the molecular biologist. Molecular Cell, 55(2), 161–169. doi:10.1016/j.molcel.2014.05.032
  • van der Lee, R., Buljan, M., Lang, B., Weatheritt, R. J., Daughdrill, G. W., Dunker, A. K., Fuxreiter, M., Gough, J., Gsponer, J., Jones, D. T., Kim, P. M., Kriwacki, R. W., Oldfield, C. J., Pappu, R. V., Tompa, P., Uversky, V. N., Wright, P. E., & Babu, M. M. (2014). Classification of intrinsically disordered regions and proteins. Chemical Reviews, 114(13), 6589–6631. doi:10.1021/cr400525m
  • Watson, J. D., & Crick, F. (1953). Molecular structure of nucleic acids: A structure for deoxyribose nucleic acid. Nature, 171(4356), 737–738. doi:10.1038/171737a0
  • Zhang, H., Li, J., Wang, R., Zhi, J., Yin, P., & Xu, J. (2019). Comparative analysis of expansin gene codon usage patterns among eight plant species. Journal of Biomolecular Structure and Dynamics, 37(4), 910–917. doi:10.1080/07391102.2018.1442746
  • Zhou, H. Q., Ning, L. W., Zhang, H. X., & Guo, F. B. (2014). Analysis of the relationship between genomic GC Content and patterns of base usage, codon usage and amino acid usage in prokaryotes: Similar GC content adopts similar compositional frequencies regardless of the phylogenetic lineages. PLoS One, 9(9), e107319. doi:10.1371/journal.pone.0107319

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.