934
Views
17
CrossRef citations to date
0
Altmetric
Research Articles

Molecular docking and molecular dynamics simulations studies on β-glucosidase and xylanase Trichoderma asperellum to predict degradation order of cellulosic components in oil palm leaves for nanocellulose preparation

, ORCID Icon, , & ORCID Icon
Pages 2628-2641 | Received 27 Jan 2020, Accepted 30 Mar 2020, Published online: 20 Apr 2020

References

  • Anbarasu, K., & Jayanthi, S. (2018). Identification of curcumin derivatives as Human Lmtk3 inhibitors for breast cancer: A docking, dynamics, and Mm/Pbsa approach. 3 Biotech, 8(5), 228. doi:10.1007/s13205-018-1239-6
  • Anuar, N., Wahab, R. A., Huyop, F., Halim, K. B. A., & Hamid, A. A. A. (2019). In silico mutation on a mutant lipase from acinetobacter haemolyticus towards enhancing alkaline stability. Journal of Biomolecular Structure and Dynamics, 1–18. doi:10.1080/07391102.2019.1683074
  • Awasthi, S., Sharma, A., Saxena, P., Yadav, J., Pandiyan, K., Kumar, M., Singh, A., Chakdar, H., Bhowmik, A., Kashyap, P. L., Srivastava, A. K., & Saxena, A. K. (2019). Molecular detection and in silico characterization of cold shock protein coding gene (Cspa) from cold adaptive pseudomonas koreensis. Journal of Plant Biochemistry and Biotechnology, 28(4), 405–413. doi:10.1007/s13562-019-00500-8
  • Bahaman, A. H., Abdul Wahab, R., Hamid, A. A. A., Halim, K. B. A., Kaya, Y., & Edbeib, M. F. (2019). Substrate docking and molecular dynamic simulation for prediction of fungal enzymes from trichoderma species-assisted extraction of nanocellulose from oil palm leaves. Journal of Biomolecular Structure and Dynamics, 1–15. doi:10.1080/07391102.2019.1679667
  • Batumalaie, K., Edbeib, M. F., Mahat, N. A., Huyop, F., & Wahab, R. A. (2018). In silico and empirical approaches toward understanding the structural adaptation of the alkaline-stable lipase Kv1 from acinetobacter haemolyticus. Journal of Biomolecular Structure and Dynamics, 36(12), 3077–3093. doi:10.1080/07391102.2017.1377635
  • Bhattacharya, S., Dhar, S., Banerjee, A., & Ray, S. (2019). Structural, functional, and evolutionary analysis of late embryogenesis abundant proteins (lea) in triticum aestivum: A detailed molecular level biochemistry using in silico approach. Computational Biology and Chemistry, 82, 9–24. doi:10.1016/j.compbiolchem.2019.06.005
  • Bienert, S., Waterhouse, A., de Beer, T. A., Tauriello, G., Studer, G., Bordoli, L., & Schwede, T. (2017). The Swiss-model repository-new features and functionality. Nucleic Acids Research, 45(D1), D313–D319. doi:10.1093/nar/gkw1132
  • Chatzou, M., Magis, C., Chang, J. M., Kemena, C., Bussotti, G., Erb, I., & Notredame, C. (2016). Multiple sequence alignment modeling: Methods and applications. Briefings in Bioinformatics, 17(6), 1009–1023. doi:10.1093/bib/bbv099
  • Chen, H., & Wang, L. (2017). Enzymatic hydrolysis of pretreated biomass.Technologies for biochemical conversion of biomass (pp. 65–99). Academic Press.
  • Chen, W., Yu, H., Lee, S. Y., Wei, T., Li, J., & Fan, Z. (2018). Nanocellulose: A promising nanomaterial for advanced electrochemical energy storage. Chemical Society Reviews, 47(8), 2837–2872. doi:10.1039/C7CS00790F
  • Cheng, F., Yang, J., Bocola, M., Schwaneberg, U., & Zhu, L. (2018). Loop engineering reveals the importance of active-site-decorating loops and gating residue in substrate affinity modulation of arginine deiminase (an anti-tumor enzyme). Biochemical and Biophysical Research Communications, 499(2), 233–238. doi:10.1016/j.bbrc.2018.03.134
  • Chieng, B., Lee, S., Ibrahim, N., Then, Y., & Loo, Y. (2017). Isolation and characterization of cellulose nanocrystals from oil palm mesocarp fiber. Polymers, 9(12), 355. doi:10.3390/polym9080355
  • Dimitriou, P. S., Denesyuk, A., Takahashi, S., Yamashita, S., Johnson, M. S., Nakayama, T., & Denessiouk, K. (2017). Alpha/beta-hydrolases: A unique structural motif coordinates catalytic acid residue in 40 protein fold families. Proteins: Structure, Function, and Bioinformatics, 85(10), 1845–1855. doi:10.1002/prot.25338
  • Dong, Z., Tang, C., Lu, Y., Yao, L., & Kan, Y. (2020). Microbial Oligo‐Α‐1,6‐Glucosidase: Current developments and future perspectives. Starch - Stärke, 72(1–2), 1900172. doi:10.1002/star.20
  • Druzhinina, I. S., & Kubicek, C. P. (2017). Genetic engineering of trichoderma reesei cellulases and their production. Microbial Biotechnology, 10(6), 1485–1499. doi:10.1111/1751-7915.12726
  • Dutta, B., Banerjee, A., Chakraborty, P., & Bandopadhyay, R. (2018). In silico studies on bacterial xylanase enzyme: Structural and functional insight. Journal of Genetic Engineering and Biotechnology, 16(2), 749–756. doi:10.1016/j.jgeb.2018.05.003
  • Edbeib, M. F., Wahab, R. A., Kaya, Y., & Huyop, F. (2017). In silico characterization of a novel dehalogenase (dehhx) from the halophile pseudomonas halophila Hx isolated from Tuz Gölü Lake, Turkey: Insights into a hypersaline-adapted dehalogenase. Annals of Microbiology, 67(5), 371–382. doi:10.1007/s13213-017-1266-2
  • Elias, N., Chandren, S., Attan, N., Mahat, N. A., Razak, F. I. A., Jamalis, J., & Wahab, R. A. (2017). Structure and properties of oil palm-based nanocellulose reinforced chitosan nanocomposite for efficient synthesis of butyl butyrate. Carbohydrate Polymers, 176, 281–292. doi:10.1016/j.carbpol.2017.08.097
  • Elias, N., Chandren, S., Razak, F. I. A., Jamalis, J., Widodo, N., & Wahab, R. A. (2018). Characterization, optimization and stability studies on Candida Rugosa lipase supported on nanocellulose reinforced chitosan prepared from oil palm biomass. International Journal of Biological Macromolecules, 114, 306–316. doi:10.1016/j.ijbiomac.2018.03.095
  • Elias, N., Wahab, R. A., Chandren, S., Abdul Razak, F. I., & Jamalis, J. (2019). Effect of operative variables and kinetic study of butyl butyrate synthesis by Candida Rugosa lipase activated by chitosan-reinforced nanocellulose derived from raw oil palm leaves. Enzyme and Microbial Technology, 130, 109367. doi:10.1016/j.enzmictec.2019.109367
  • Ezeilo, U. R., Lee, C. T., Huyop, F., Zakaria, I. I., & Wahab, R. A. (2019a). Raw oil palm frond leaves as cost-effective substrate for cellulase and xylanase productions by Trichoderma Asperellum Uc1 under solid-state fermentation. Journal of Environmental Management, 243, 206–217. doi:10.1016/j.jenvman.2019.04.113
  • Ezeilo, U. R., Wahab, R. A., & Mahat, N. A. (2019b). Optimization studies on cellulase and xylanase production by Rhizopus Oryzae Uc2 using raw oil palm frond leaves as substrate under solid state fermentation. Renewable Energy, doi:10.1016/j.renene.2019.11.149
  • Ezeilo, U. R., Wahab, R. A., Tin, L. C., Zakaria, I. I., Huyop, F., & Mahat, N. A. (2019c). Fungal-assisted valorization of raw oil palm leaves for production of cellulase and xylanase in solid state fermentation media. Waste and Biomass Valorization, doi:10.1007/s12649-019-00653-6
  • Falck, P., Linares-Pasten, J. A., Karlsson, E. N., & Adlercreutz, P. (2018). Arabinoxylanase from glycoside hydrolase family 5 is a selective enzyme for production of specific arabinoxylooligosaccharides. Food Chemistry, 242, 579–584. doi:10.1016/j.foodchem.2017.09.048
  • Fia, G., Millarini, V., Granchi, L., Bucalossi, G., Guerrini, S., Zanoni, B., & Rosi, I. (2018). Beta-glucosidase and esterase activity from oenococcus oeni: Screening and evaluation during malolactic fermentation in harsh conditions. LWT, 89, 262–268. doi:10.1016/j.lwt.2017.10.060
  • Financie, R., Moniruzzaman, M., & Uemura, Y. (2016). Enhanced enzymatic delignification of oil palm biomass with ionic liquid pretreatment. Biochemical Engineering Journal, 110, 1–7. doi:10.1016/j.bej.2016.02.008
  • Fuentes, D., Munoz, N. M., Guo, C., Polak, U., Minhaj, A. A., Allen, W. J., Gustin, M. C., & Cressman, E. N. K. (2018). A molecular dynamics approach towards evaluating osmotic and thermal stress in the extracellular environment. International Journal of Hyperthermia, 35(1), 559–567. doi:10.1080/02656736.2018.1512161
  • Ishak, S. N. H., Aris, S., Halim, K. B. A., Ali, M. S. M., Leow, T. C., Kamarudin, N. H. A., Masomian, M., & Rahman, R. (2017). Molecular dynamic simulation of space and earth-grown crystal structures of thermostable T1 lipase geobacillus zalihae revealed a better structure. Molecules, 22(10), 1574. doi:10.3390/molecules22101574
  • Karami, M., Jalali, C., & Mirzaie, S. (2017). Combined virtual screening, mmpbsa, molecular docking and dynamics studies against deadly anthrax: An in silico effort to inhibit Bacillus Anthracis nucleoside hydrolase. Journal of Theoretical Biology, 420, 180–189. doi:10.1016/j.jtbi.2017.03.010
  • Khersonsky, O., Lipsh, R., Avizemer, Z., Ashani, Y., Goldsmith, M., Leader, H., Dym, O., Rogotner, S., Trudeau, D. L., Prilusky, J., Amengual-Rigo, P., Guallar, V., Tawfik, D. S., & Fleishman, S. J. (2018). Automated design of efficient and functionally diverse enzyme repertoires. Molecular Cell, 72(1), 178–186. doi:10.1016/j.molcel.2018.08.033
  • Kist, R., Timmers, L., & Caceres, R. A. (2018). Searching for potential Mtor inhibitors: Ligand-based drug design, docking and molecular dynamics studies of rapamycin binding site. Journal of Molecular Graphics and Modelling, 80, 251–263. doi:10.1016/j.jmgm.2017.12.015
  • Kovacic, F., Mandrysch, A., Poojari, C., Strodel, B., & Jaeger, K.-E. (2016). Structural features determining thermal adaptation of esterases. Protein Engineering Design and Selection, 29(2), 65–76. doi:10.1093/protein/gzv061
  • Kumar, C. V., Swetha, R. G., Anbarasu, A., & Ramaiah, S. (2014). Computational analysis reveals the association of threonine 118 methionine mutation in Pmp22 resulting in Cmt-1a. Advances in Bioinformatics, 2014, 1–10. doi:10.1155/2014/502618
  • Kumar, S., Fazil, M., Ahmad, K., Tripathy, M., Rajapakse, J. C., & Verma, N. K. (2019). Computational analysis of protein-protein interactions in motile T-Cells. Methods in Molecular Biology (Clifton, NJ), 1930, 149–156. doi:10.1007/978-1-4939-9036-8_18
  • Kumari, R., Kumar, R., & Lynn, A., Open Source Drug Discovery Consortium. (2014). G_Mmpbsa–a gromacs tool for high-throughput Mm-Pbsa calculations. Journal of Chemical Information and Modeling, 54(7), 1951–1962. doi:10.1021/ci500020m
  • L, S., & Vasu, P. (2017). In silico designing of therapeutic protein enriched with branched-chain amino acids for the dietary treatment of chronic liver disease. Journal of Molecular Graphics and Modelling, 76, 192–204. doi:10.1016/j.jmgm.2017.06.015
  • Mahajan, S., & Sanejouand, Y. H. (2017). Jumping between protein conformers using normal modes. Journal of Computational Chemistry, 38(18), 1622–1630. doi:10.1002/jcc.24803
  • Mello, B. L., Alessi, A. M., Riano-Pachon, D. M., deAzevedo, E. R., Guimaraes, F. E. G., Espirito Santo, M. C., McQueen-Mason, S., Bruce, N. C., & Polikarpov, I. (2017). Targeted metatranscriptomics of compost-derived consortia reveals a Gh11 exerting an unusual Exo-1,4-beta-xylanase activity. Biotechnology for Biofuels, 10(1), 254. doi:10.1186/s13068-017-0944-4
  • Mohamad Rosdi, M. N., Mohd Arif, S., Abu Bakar, M. H., Razali, S. A., Mohamed Zulkifli, R., & Ya’akob, H. (2018). Molecular docking studies of bioactive compounds from annona muricata linn as potential inhibitors for Bcl-2, Bcl-W and Mcl-1 antiapoptotic proteins. Apoptosis, 23(1), 27–40. doi:10.1007/s10495-017-1434-7
  • Onuma, H., Hara, K., Sugita, K., Kano, A., Fukuta, Y., & Shirasaka, N. (2019). Purification and characterization of a glycoside hydrolase family 5 endoglucanase from tricholoma matsutake grown on barley based solid-state medium. Journal of Bioscience and Bioengineering, doi: doi:10.1016/j.jbiosc.2019.05.012
  • Saai Anugraha, T. S., Swaminathan, T., Swaminathan, D., Meyyappan, N., & Parthiban, R. (2016). Enzymes in platform chemical biorefinery. Platform Chemical Biorefinery, 451–469.
  • Sammond, D. W., Payne, C. M., Brunecky, R., Himmel, M. E., Crowley, M. F., & Beckham, G. T. (2012). Cellulase linkers are optimized based on domain type and function: Insights from sequence analysis, biophysical measurements, and molecular simulation. PLoS One, 7(11), e48615. doi:10.1371/journal.pone.0048615
  • Sandhu, S. K., Mathur, A., Gupta, R., Puri, S. K., & Adsul, M. (2018). Cellulosic biomass-hydrolyzing enzymes. In Waste to wealth (pp. 441–456).
  • Sansen, S., De Ranter, C. J., Gebruers, K., Brijs, K., Courtin, C. M., Delcour, J. A., & Rabijns, A. (2004). Structural basis for inhibition of aspergillus niger xylanase by triticum aestivum xylanase inhibitor-I. Journal of Biological Chemistry, 279(34), 36022–36028. doi:10.1074/jbc.M404212200
  • Schindler, C. E., Chauvot de Beauchene, I., de Vries, S. J., & Zacharias, M. (2017). Protein-protein and peptide-protein docking and refinement using attract in Capri. Proteins: Structure, Function, and Bioinformatics, 85(3), 391–398. doi:10.1002/prot.25196
  • Sgobba, M., Caporuscio, F., Anighoro, A., Portioli, C., & Rastelli, G. (2012). Application of a post-docking procedure based on Mm-Pbsa and Mm-Gbsa on single and multiple protein conformations. European Journal of Medicinal Chemistry, 58, 431–440. doi:10.1016/j.ejmech.2012.10.024
  • Śledź, P., & Caflisch, A. (2018). Protein structure-based drug design: From docking to molecular dynamics. Current Opinion in Structural Biology, 48, 93–102. doi:10.1016/j.sbi.2017.10.010
  • Srivastava, N., Rathour, R., Jha, S., Pandey, K., Srivastava, M., Thakur, V. K., Sengar, R. S., Gupta, V. K., Mazumder, P. B., Khan, A. F., & Mishra, P. K. (2019). Microbial beta glucosidase enzymes: Recent advances in biomass conversation for biofuels application. Biomolecules, 9(6), 220. doi:10.3390/biom9060220
  • Tahara, T., Watanabe, A., Yutani, M., Yamano, Y., Sagara, M., Nagai, S., Saito, K., Yamashita, M., Ihara, M., & Iida, A. (2020). Stat3 inhibitory activity of naphthoquinones isolated from Tabebuia Avellanedae. Bioorganic and Medicinal Chemistry, 28(6), 115347. doi:10.1016/j.bmc.2020.115347
  • Tan, S. T., Hashim, H., Abdul Rashid, A. H., Lim, J. S., Ho, W. S., & Jaafar, A. B. (2018). Economic and spatial planning for sustainable oil palm biomass resources to mitigate transboundary haze issue. Energy, 146, 169–178. doi:10.1016/j.energy.2017.07.080
  • Wang, L., Fu, Q., Yu, J., Liu, L., & Ding, B. (2019). Nanoparticle-doped polystyrene/polyacrylonitrile nanofiber membrane with hierarchical structure as promising protein hydrophobic interaction chromatography media. Composites Communications, 16, 33–40. doi:10.1016/j.coco.2019.08.008
  • Waterhouse, A., Bertoni, M., Bienert, S., Studer, G., Tauriello, G., Gumienny, R., Heer, F. T., de Beer, T. A. P., Rempfer, C., Bordoli, L., Lepore, R., & Schwede, T. (2018). Swiss-Model: Homology modelling of protein structures and complexes. Nucleic Acids Research, 46(W1), W296–W303. doi:10.1093/nar/gky427
  • Xu, Z., Yang, Y., & Huang, B. (2017). A teaching approach from the exhaustive search method to the Needleman-Wunsch Algorithm. Biochemistry and Molecular Biology Education, 45(3), 194–204. doi:10.1002/bmb.21027

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.